scholarly journals CircMED13L_012 promotes lung adenocarcinoma progression by upregulation of MAPK8 mediated by miR-433-3p

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenshu Chen ◽  
Guanying Zheng ◽  
Jianyuan Huang ◽  
Lihuan Zhu ◽  
Wujin Li ◽  
...  

Abstract Background Metastasis and disease refractoriness remain as major challenges for non-small cell lung cancer (NSCLC) treatment and understanding the underlying molecular mechanisms is of scientific and clinical value. Therefore, in this study, we aimed to explore the effects of circMED13L_012 on the proliferation, migration, invasion and drug-resistance of NSCLC tumor cells. Methods In this study, we utilized clinical samples and NSCLC cell lines to explore the association between circMED13L_012 expressions and tumor cell metastasis and chemo resistance. CCK8 and transwell assay were conducted to explore the impact of circMED13_012 on NSCLC tumor proliferation and migrative capabilities. Dual-luciferase reporter gene assay was conducted to validate the circMED13L_012 interaction network. Results Our results demonstrated that circMED13L_012 exhibited significantly elevated average level in our clinical samples of NSCLC, compared with normal tissues. circMED13L_012 level was positively correlated with disease stage and metastatic status. Increased circMED13L_012 expression was associated with the enhanced migration, proliferation and chemo resistance of NSCLC cell lines. Further experiments indicated that circMED13L_012 promoted malignant behavior of NSCLC tumor cells by targeting MAPK8 through modulation miR-433-3p expression. Conclusions Our study for the first time demonstrated that circMED13L_012–miR-433-3p–MAPK8 axis played important role for NSCLC pathogenesis, which could be potential therapeutic target for the development of future NSCLC treatment.

Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinxin Kou ◽  
Hui Ding ◽  
Lei Li ◽  
Hongtu Chao

Purpose. Cisplatin is one of the most effective drugs for treating ovarian carcinoma (OC), which is among the most lethal types of carcinoma. However, the chemoresistance to cisplatin that develops over time leads to a poor clinical outcome for many OC patients. Therefore, it is necessary to clearly understand the molecular mechanisms of chemoresistance. In this study, we examined how Hsa-miR-105-1 functions in cisplatin-resistant OC cells. Methods. The levels of Hsa-miR-105-1 expression in cisplatin-sensitive and resistant OC cell lines were detected by qRT-PCR. The target gene of Hsa-miR-105-1 was predicted by using the TargetScan and Starbase databases and verified by the double luciferase reporter gene assay. The target gene of Hsa-miR-105-1 was identified as ANXA9, and ANXA9 expression was evaluated by qRT-PCR, western blotting, and immunofluorescence. To validate the function of Hsa-miR-105-1 in OC cells, we silenced or overexpressed Hsa-miR-105-1 in cisplatin-sensitive or resistant OC cell lines, respectively. Furthermore, the expression levels of several apoptosis-related proteins, including P53, P21, E2F1, Bcl-2, Bax, and caspase-3, were examined by western blot analysis. Results. The levels of Hsa-miR-105-1 expression were abnormally downregulated in cisplatin-resistant OC cells, while ANXA9 expression was significantly upregulated in those cells. Treatment with an Hsa-miR-105-1 inhibitor promoted the expression of ANXA9 mRNA and protein, enhanced the resistance to cisplatin, and attenuated the cell apoptosis induced by cisplatin in cisplatin-sensitive OC cells. Moreover, treatment with Hsa-miR-105-1 mimics inhibited ANXA9 expression, which further increased the levels of P53, P21, and Bax expression and decreased the levels of E2F1 and Bcl-2 expression, finally resulting in an increased sensitivity to cisplatin in cisplatin-resistant OC cells. Conclusion. We found that a downregulation of Hsa-miR-105-1 expression enhanced cisplatin-resistance, while an upregulation of Hsa-miR-105-1 restored the sensitivity of OC cells to cisplatin. The Hsa-miR-105-1/ANXA9 axis plays an important role in the cisplatin-resistance of OC cells.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


2021 ◽  
Author(s):  
Yaping Liu ◽  
Xu Zhao ◽  
Yinnan Chen ◽  
Gang Guo ◽  
Jiansheng Wang ◽  
...  

Abstract To evaluate the expression of PITPNA-AS1 and miR-98-5p in gastric cancer tissues as well as their association with progression of gastric cancer, and investigate the role of PITPNA-AS1 and miR-98-5p in developing platinum resistance. RNA sequencing was used to identify candidate lncRNAs and microRNAs related to local recurrence of gastric cancer. qRT-PCR was used to investigate the expression of PITPNA-AS1 and miR-98-5p. CCK-8 and caspase3/7 activity were used to evaluate the cell proliferation and apoptosis rate. Dual luciferase reporter gene assay and RNA pull down were used to evaluate the cross talk between PITPNA-AS1 and miR-98-5p. PITPNA-AS1 and miR-98-5p could regulate cell proliferation and inhibit apoptosis in gastric cancer cell lines. Cisplatin and lobaplatin could significantly suppress the expression of PITPNA-AS1, which interacted with negatively regulated miR-98-5p expression. PITPNA-AS1 overexpression impaired the effect of platinum, which was partially reversed by downregulation of miR-98-5p knock down. In gastric cancer, PITPNA-AS1 and miR-98-5p could regulat cell growth, apoptosis and platinum resistance. They have the potential to be biomarkers and curative therapeutic targets. However, further research on molecular mechanisms are needed.


2021 ◽  
Author(s):  
Yilin Hu ◽  
Huiling Sun ◽  
Qiping Lu ◽  
Hongliang Mei ◽  
Rong Liu

Abstract Background MiR-92a-3p has been reported to play a part in hepatocellular carcinoma (HCC), a leading type of lethal cancer around the world. In this study, we explored the function and mechanism of miR-92a-3p in HCC. Methods Firstly, the expression of miR-92a-3p in HCC along with its relationship with PTEN was analyzed through biological information. To investigate the impact of miR-92a-3p on the migration and invasion of HCC cells, we performed scratch wound healing and transwell assays. Next, RT-qPCR, western blot and dual luciferase reporter gene assays were conducted to determine whether PTEN is targeted by miR-92a-3p, which was then verified through rescue assays. Afterwards, in vivo animal experiments were carried out to determine the function of miR-92a-3p in HCC tissues. As an established fact, PETN is an anti-oncogene with frequent mutation inactivation in human cancers. Thus, we used the database to predict the mutation of PETN and its mutation frequency. Finally, CRISPR-cas12a was applied to detect the R130Q mutation on PETN in HCC clinical samples. Results This study found that the migration and invasion of HCC could be suppressed by inhibiting miR-92a-3p, which regulates the proliferation, migration and invasion of HCC through the regulation of PETN. The bioinformatics analysis indicated higher mutation frequency of R130Q/G/L* site on the PETN gene, and greater impact of R130Q site mutation on the progression of HCC. CRISPR-cas12a detected 26 cases of R130Q mutations on PTEN in 40 HCC clinical samples Conclusion Collectively, this study revealed that miR-92a-3p promoted the invasion and migration of HCC by targeting PTEN, and that the stability of PETN also affected the development of HCC, which may enrich and deepen our knowledge on the progression of HCC.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Hang Wang ◽  
Wayne Lau ◽  
Erhe Gao ◽  
Walter Koch ◽  
Xin Ma ◽  
...  

Myocardial ischemic/reperfusion (MI/R) injury is significantly enhanced in diabetes by incompletely understood mechanisms. Recent clinical and experimental studies demonstrate that hypoadiponectinemia during diabetes enhances oxidative stress and exaggerates MI/R injury. However, molecular mechanisms responsible for hypoadiponectinemia-induced oxidative stress remain unknown. In a discovery-driven fashion, we determined the role of cardiac microRNAs in the MI/R response in adiponectin knockout (APNKO) mice. From 68 total miRNAs differentially expressed between APNKO and wild type (WT) mice, miRNA 449b was identified as the microRNA most relevant to oxidative stress and apoptosis. In cultured neonatal cardiomyocytes, miRNA 449b silencing inhibited hypoxia/reoxygenation-induced apoptosis, whereas miR-449b overexpression significantly increased oxidative stress and cardiomyocyte apoptosis. In APNKO mice, administration of anti-miR-449b decreased oxidative stress (-17.2±3.8%, p<0.05), reduced caspase-3 activity (-21.3±4.2%, p<0.05), attenuated myocardial apoptosis (-16.3±4.1%, p<0.05), and improved myocardial function (1.4±0.3 fold). To identify the downstream molecule regulated by miRNA 449b, we integrated transcriptomics and proteomics data with computational annotation data, and identified Nrf-1 as a miRNA 449b target. A luciferase reporter gene assay demonstrated that miRNA 449b inhibited Nrf-1 expression via Nrf-1 mRNA 3’UTR region binding. Finally, we demonstrated that miRNA 449b was significantly upregulated, Nrf-1 expression was significantly decreased, and the anti-oxidative molecule metallothionein (MT) was significantly inhibited in the diabetic heart subjected to MI/R. Administration of anti-miR-449b in diabetic animals upregulated Nrf-1 and MT expression, reduced oxidative stress, and improved cardiac function (P<0.01) after MI/R. Taken together, this study provides the first evidence that hypoadiponectinemia during diabetes causes cardiac miRNA-449b upregulation and subsequent downregulation of Nrf-1 and MT, thus enhancing oxidative stress and MI/R injury. MicroRNA 449b may represent a potential therapeutic target against diabetic heart disease.


2021 ◽  
Vol 17 (9) ◽  
pp. 1882-1889
Author(s):  
Suqin Wang ◽  
Lina Xu ◽  
Zhiqiang Zhang ◽  
Ping Wang ◽  
Rong Zhang ◽  
...  

Dysregulation expression of miR-375 is noted to correlate with progression of cervical cancer. This study attempted to investigate the impact of overexpressed miR-375-loaded liposome nanoparticles on proliferation of cervical cancer (CC), to provide an insight on pathogenesis of CC disorder. CC cells were co-cultured with pure liposome nanoparticles (empty vector group), miR-375 agonist-loaded liposome nanoparticles, or transfected with miR-375 antagonist. Besides, some cells were exposed to TGF-β/Smads signaling pathway inhibitor or activator whilst cell proliferation was assessed by MTT assay, and expressions of FZD4 and miR-375 were determined. Western blot analysis was carried out to detect the expression of TGF-β pathway factors (TGF-β, Smad2, Smad7, p-Smad2) and its downstream Smads pathway. The interaction between miR-375 and FZD4 was evaluated by dual-luciferase reporter gene assay. Overexpression of miR-375 induced arrest at the G0/G1 phase of cell cycle and elevation of Smad2 protein expression (P <0.05), with lower expressions of TGF-β, Smad7, p-Smad2, and FZD4, while transfection with miR-375 inhibitor exhibited opposite activity. Presence of miR-375 agonist-loaded liposome nanoparticles induced decreased cell proliferation. There was a targeting relationship between miR-375 and FZD4, and administration with TGF-β/Smads agonist resulted in increased miR-375 and Smad2 expressions, as well as decreased TGF-β, Smad7, p-Smad2, FZD4 protein expression, and the number of S phase and G2/M phase cells (P < 0.05). The signaling inhibitor oppositely suppressed cell proliferation decreasing miR-375 expression. miR-375-loaded liposome nanoparticles activated TGF-β/Smads signaling pathway to restrain cell cycle and suppress cell division, and proliferation through targeting FZD4 in CC. Its molecular mechanism is related to activation of TGF-β/Smads signaling pathway.


2015 ◽  
Vol 37 (5) ◽  
pp. 1956-1966 ◽  
Author(s):  
Shiping Liu ◽  
Peng Feng

Background/Aims: Increasing evidence has shown that miR-203 plays important role in human cancer progression. However, little is known about the function of miR-203 in osteosarcoma (OS). Methods: The expression of miR-203 in OS tissues and cell lines were examined by qRT-PCR. The biological role of miR-20 in OS cell proliferation was examined in vitro and in vivo. The targets of miR-203 were identified by a luciferase reporter gene assay. Results: miR-203 was down regulated in OS tissues and cell lines; decreased miR-203 was associated with a poor overall survival in OS patients. Restoration of miR-203 expression reduced cell growth in vitro and suppressed tumorigenicity in vivo. In contrast, inhibition of miR-203 stimulated OS cell growth both in vitro and in vivo. In addition, TANK binding kinase 1 (TBK1) was identified as a direct target of miR-203; overexpression of TBK1 partly reversed the suppressive effects of miR-203. Furthermore, TBK1 was found up-regulated and inversely correlated with miR-203 in OS tissues. Conclusion: Taken together, these findings suggest that miR-203 acts as a tumor suppressor via regulation of TBK1 expression in OS progression, and miR-203 may be a promising therapeutic target for OS.


2020 ◽  
Author(s):  
Tengfei Chen ◽  
Yali Liu ◽  
Chang Li ◽  
Chun Xu ◽  
Cheng Ding ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) is the most malignant cancers worldwide, but the pathogenesis is not completely known. In this study, we explored the function and mechanism of exosomes transferring miR-3180-3p in NSCLC progression.Method: The expression of miR-3180-3p of NSCLC tissues and para-carcinoma tissues was from the GEO database (GEO: GSE53882). The exosomes derived from A549 cells were identified. The proliferation, migration and invasion were measured after treatment with exosomal miR-3180-3p or transfected by miR-3180-3p mimics. The relationship between miR-3180-3p and forkhead box P4 (FOXP4) was predicted by bioinformatics tool and measured dual-luciferase reporter gene assay and western blotting. At last, mouse xenograft model of NSCLC cells was established to verify the function of exosomal miR-3180-3p in vivo.Results: We found that miR-3180-3p decreased in both NSCLC cell lines and patient tissues. Overexpression of miR-3180-3p or treatment with exosomal miR-3180-3p significantly repressed the cell proliferation and metastasis in NSCLC cell lines. Subsequently, we found miR-3180-3p performed function by downregulating FOXP4 protein expression. Furthermore, the volume and weight of nude mice tumor which expressed exosomal miR-3180-3p was significantly reduced. Conclusion: Exosomal miR-3180-3p suppresses NSCLC progression by downregulating FOXP4 expression.


2020 ◽  
Author(s):  
Juan Tong ◽  
Huilan Liu ◽  
Changcheng Zheng ◽  
Xiaoyu Zhu ◽  
Xiang Wan ◽  
...  

Abstract Background: Accumulating circular RNAs (circRNAs) are reported to be abnormally expressed in diverse cancers, hematologic malignancies included. This study aimed to investigate the biological function and underlying mechanisms of circ_0000005 in acute myeloid leukemia (AML).Materials and methods: Bone marrow samples were enrolled from AML patients with normal samples as controls. Circ_0000005, miR-139-5p and tetraspanin 3 (Tspan3) were detected by qRT-PCR and Western blot, respectively. AML cell lines (KG1 and HL60) were used as cell models. CCK-8, Transwell and flow cytometry assays were adopted to study the biological functions of circ_0000005 on AML cells in vitro. The interrelation between circ_0000005 and miR-139-5p was detected by bioinformatics, qRT-PCR, luciferase reporter gene assay, RNA pull-down assay, and RNA-binding protein immunoprecipitation (RIP) assays. Ultimately, Western blot, qRT-PCR, luciferase reporter gene assay were adopted to corroborate the interrelation between miR-139-5p and its target Tspan3. Results: Circ_0000005 was demonstrably elevated in both AML clinical samples and cell lines. Circ_0000005 overexpression promoted the viability, migration and invasion of AML cells, and repressed the apoptosis of AML cells, while silencing circ_0000005 showed opposite biological effects. Circ_0000005 interacted with miR-139-5p and repressed its expression, and Tspan3 was proved to be negatively regulated by miR-139-5p. Circ_0000005 could promote the expression of Tspan3 via repressing miR-139-5p, and the oncogenic functions of circ_0000005 were dependent on its regulatory function on miR-139-5p/Tspan3 axis.Conclusion: Circ_0000005 facilitates the malignant phenotypes of AML cells via miR-139-5p/Tspan3 axis. Circ_0000005 may serve as a potential therapeutic target in AML.


Sign in / Sign up

Export Citation Format

Share Document