scholarly journals Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Maria Al Haddad ◽  
Rayane El-Rif ◽  
Samer Hanna ◽  
Leila Jaafar ◽  
Rayanne Dennaoui ◽  
...  

Abstract Background Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. Methods We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. Results We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. Conclusion In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peng Zou ◽  
Menghai Zhu ◽  
Chong Lian ◽  
Jiaqiang Wang ◽  
Zhiquan Chen ◽  
...  

AbstractLung cancer is the leading cause of cancer-related deaths worldwide, with 50–70% of patients suffering from bone metastasis. Accumulating evidence has demonstrated that miRNAs are involved in cell proliferation, migration, and invasion in malignancy, such as lung cancer bone metastasis. In the present study, we demonstrated that reduced miR-192-5p and increased TRIM44 levels were associated with the proliferation, migration and invasion of lung cancer. Furthermore, the potential functions of miR-192-5p were explored in A549 and NCI-H1299 cells. We found that miR-192-5p upregulation suppressed tumour behaviours in lung cancer cells. To further investigate whether miR-192-5p is associated with TRIM44, we used TargetScan software to predict the binding site between miR-192-5p and TRIM44. Luciferase activity assays were performed to verify this prediction. In addition, the significant role of miR-192-5p in negatively regulating TRIM44 expression was manifested by our research group. our results suggest that miR-192-5p inhibited the proliferation, migration and invasion of lung cancer through TRIM44.


Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


2017 ◽  
Vol 43 (2) ◽  
pp. 757-767 ◽  
Author(s):  
Xiaoxue Bai ◽  
Lin Meng ◽  
Huijie Sun ◽  
Zhuo Li ◽  
Xiufang Zhang ◽  
...  

Background/Aims: Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Methods: Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. Results: MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. Conclusion: MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Jih-Tung Pai ◽  
Yi-Chin Lee ◽  
Si-Ying Chen ◽  
Yann-Lii Leu ◽  
Meng-Shih Weng

Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT) through the regulation of epidermal growth factor receptor (EGFR) signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (ERK) signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.


Author(s):  
Ben Li ◽  
Bo Zhang ◽  
Qiong Wu ◽  
Xinming Chen ◽  
Xiang Cao ◽  
...  

Background: Peroxiredoxins (Prxs) comprise antioxidant factors that are widely found in prokaryotes and eukaryotes. Abnormal expression of Prxs is closely related to tumorigenesis. Methods: This study examined the prognostic value and expression of Prxs in lung cancer by Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier Plotter, cBioPortal and Functional Enrichment Analysis Tool (FunRich) databases. Results: We found that Prx1/2/3/4/5 were overexpressed in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) relative to normal lung cells. However, the expression level of Prx6 was lower in LUAD and higher in LUSC than normal lung cells. The level of Prx3 and Prx6 were associated with pathological stage. Prognostic analysis showed that elevated Prx1 and Prx2 expression were correlated with low Overall Survival (OS), whereas high Prx5 and Prx6 expression level predicted high OS. Conclusions: Our results effectively revealed the level of Prxs in lung cancer and its influence on the prognosis of lung carcinoma, contributing to the study of the role of Prxs in tumorigenesis.


Oncotarget ◽  
2016 ◽  
Vol 7 (38) ◽  
pp. 61366-61377 ◽  
Author(s):  
Zhao Li ◽  
Wenzhuo Zhu ◽  
Liwen Xiong ◽  
Xiaobo Yu ◽  
Xi Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document