scholarly journals Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Sumanth Khadke ◽  
Nayla Ahmed ◽  
Nausheen Ahmed ◽  
Ryan Ratts ◽  
Shine Raju ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in progressive organ damage. Discussion We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ƙB) signaling. It effectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, and hemodynamic instability. Important cytokines involved in this phase are interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. This is typically followed by a recovery phase with production of antibodies against the virus. We summarize published data regarding virus-host interactions, key immunological mechanisms responsible for virus-associated CRS, and potential opportunities for therapeutic interventions. Conclusion Evidence regarding SARS-CoV-2 epidemiology and pathogenesis is rapidly evolving. A better understanding of the pathophysiology and immune system dysregulation associated with CRS and acute respiratory distress syndrome in severe COVID-19 is imperative to identify novel drug targets and other therapeutic interventions.

Medicines ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 55
Author(s):  
Leonardo Freire-de-Lima ◽  
Aline Miranda Scovino ◽  
Camilla Cristie Barreto Menezes ◽  
Leonardo Marques da Fonseca ◽  
Jhenifer Santos dos Reis ◽  
...  

Coronavirus disease 2019 (COVID-19) can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. Since 2019, several studies regarding the interplay between autoimmune diseases and COVID-19 infections is increasing all over the world. In addition, thanks to new scientific findings, we actually know better why certain conditions are considered a higher risk in both situations. There are instances when having an autoimmune disease increases susceptibility to COVID-19 complications, such as when autoantibodies capable of neutralizing type I IFN are present, and other situations in which having COVID-19 infection precedes the appearance of various autoimmune and autoinflammatory diseases, including multisystem inflammatory syndrome in children (MIS-C), Guillain-Barré syndrome, and Autoimmune haemolytic anaemia (AIHA), thus, adding to the growing mystery surrounding the SARS-CoV-2 virus and raising questions about the nature of its link with autoimmune and autoinflammatory sequelae. Herein, we discuss the role of host and virus genetics and some possible immunological mechanisms that might lead to the disease aggravation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 933
Author(s):  
Fien Demeulemeester ◽  
Karin de Punder ◽  
Marloes van Heijningen ◽  
Femke van Doesburg

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Author(s):  
Gideon A. Gyebi ◽  
Oludare M. Ogunyemi ◽  
Ibrahim M. Ibrahim ◽  
Saheed O. Afolabi ◽  
Joseph O. Adebayo

2014 ◽  
Vol 5 ◽  
Author(s):  
Daniel Hurley ◽  
Matthew P. McCusker ◽  
Séamus Fanning ◽  
Marta Martins

2021 ◽  
Vol 9 (5) ◽  
pp. 957
Author(s):  
Tomas Hrncir ◽  
Lucia Hrncirova ◽  
Miloslav Kverka ◽  
Robert Hromadka ◽  
Vladimira Machova ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Its worldwide prevalence is rapidly increasing and is currently estimated at 24%. NAFLD is highly associated with many features of the metabolic syndrome, including obesity, insulin resistance, hyperlipidaemia, and hypertension. The pathogenesis of NAFLD is complex and not fully understood, but there is increasing evidence that the gut microbiota is strongly implicated in the development of NAFLD. In this review, we discuss the major factors that induce dysbiosis of the gut microbiota and disrupt intestinal permeability, as well as possible mechanisms leading to the development of NAFLD. We also discuss the most consistent NAFLD-associated gut microbiota signatures and immunological mechanisms involved in maintaining the gut barrier and liver tolerance to gut-derived factors. Gut-derived factors, including microbial, dietary, and host-derived factors involved in NAFLD pathogenesis, are discussed in detail. Finally, we review currently available diagnostic and prognostic methods, summarise latest knowledge on promising microbiota-based biomarkers, and discuss therapeutic strategies to manipulate the microbiota, including faecal microbiota transplantation, probiotics and prebiotics, deletions of individual strains with bacteriophages, and blocking the production of harmful metabolites.


2020 ◽  
Vol 21 (10) ◽  
pp. 3665
Author(s):  
Wiwin Is Effendi ◽  
Tatsuya Nagano ◽  
Helmia Hasan ◽  
Resti Yudhawati

The innate immune system identifies exogenous threats or endogenous stress through germline-encoded receptors called pattern recognition receptors (PRRs) that initiate consecutive downstream signaling pathways to control immune responses. However, the contribution of the immune system and inflammation to fibrosing interstitial lung diseases (ILD) remains poorly understood. Immunoreceptor tyrosine-based motif-bearing C-type lectin-like receptors (CTLRs) may interact with various immune cells during tissue injury and wound repair processes. Dectin-1 is a CTLR with dominant mechanisms manifested through its intracellular signaling cascades, which regulate fibrosis-promoting properties through gene transcription and cytokine activation. Additionally, immune impairment in ILD facilitates microbiome colonization; hence, Dectin-1 is the master protector in host pulmonary defense against fungal invasion. Recent progress in determining the signaling pathways that control the balance of fibrosis has implicated immunoreceptor tyrosine-based motif-bearing CTLRs as being involved, either directly or indirectly, in the pathogenesis of fibrosing ILD.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Fahmida Parvin ◽  
Shafi M. Tareq

AbstractDumping of solid waste in the non-engineered landfill is very common in the developing countries. Among the different disadvantages of this kind of landfilling, leachate is the major concern to public health, which is a toxic byproduct generated from the landfill; and can percolate to the ground water and consequently migrate in surface water. Using systematic review on published data, the present study endeavors to compare the leachate contamination potential of four major landfills of Bangladesh, named Amin Bazar, Matuail, Mogla Bazar and Rowfabad; which are situated in 3 of the 6 big mega cities of Bangladesh and assessed the effects of leachate leakage on surrounding water body as well as on human health. This study, for the first time calculated the leachate pollution index (LPI) for the landfill sites of Bangladesh and found that the LPI of Matuail landfill site (19.81) is much higher which is comparable to some polluted landfill sites of India and Malaysia. The concentrations of several potentially toxic metals found in the surface and ground water in the vicinity of the landfill sites were above the maximum permissible limit values of department of Environment, Bangladesh and World Health Organization (WHO). The human health risk index for toxic heavy metals in different vegetables and rice grain showed high health risk potential for Pb, Cd, Ni, and Mn. The total carcinogenic risk for Ni and Pb are found very high in the edible plants near those landfill sites, suggesting the risk of Ni and Pb induced carcinogenesis by the consumption of those plants. The present conditions of surface, ground water and agriculture products near the landfill sites of Bangladesh are much frightening to the biota and local inhabitants.


Sign in / Sign up

Export Citation Format

Share Document