scholarly journals Development, progress and future prospects in cryobiotechnology of Lilium spp.

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jing-Wei Li ◽  
Xiao-Chen Zhang ◽  
Min-Rui Wang ◽  
Wen-Lu Bi ◽  
M. Faisal ◽  
...  

Abstract Lilium is one of the most popular flower crops worldwide, and some species are also used as vegetables and medicines. The availability of and easy access to diverse Lilium genetic resources are essential for plant genetic improvements. Cryopreservation is currently considered as an ideal means for the long-term preservation of plant germplasm. Over the last two decades, great efforts have been exerted in studies of Lilium cryopreservation and progress has been made in the successful cryopreservation of pollen, seeds and shoot tips in Lilium. Genes that exist in Lilium, including those that regulate flower shape, color and size, and that are resistant to cold stress and diseases caused by fungi and viruses, provide a rich source of valuable genetic resources for breeding programs to create novel cultivars required by the global floriculture and ornamental markets. Successful cryopreservation of Lilium spp. is a way to preserve these valuable genes. The present study provides updated and comprehensive information about the development of techniques that have advanced Lilium cryopreservation. Further ideas are proposed to better direct future studies on Lilium cryobiotechnology.

2014 ◽  
Vol 24 (3) ◽  
pp. 285-289 ◽  
Author(s):  
Matthew W. Fidelibus

Growers in California’s San Joaquin Valley produced >25% of the world’s raisins in 2012, with a farm-gate value of >$590 million, making the United States the leading global producer of raisins. California’s traditional raisin-making method is a laborious process in which clusters of grapes (Vitis vinifera) are harvested by hand onto paper trays, which are left in the vineyard to dry. The drying fruit may need to be turned or rolled, tasks requiring manual labor, and the trays of dried raisins are also picked up by hand. Most California raisins continue to be made in this way, but in recent years, the declining availability and increasing cost of labor has prompted many growers to implement one of two mechanized production systems, “continuous tray” (CT) or “dry-on-vine” (DOV). In CT systems, machines are used to pick the berries, lay them onto a tray, and pick up the dried raisins. The CT system could be considered a short-term strategy: it is compatible with existing conventional ‘Thompson Seedless’ raisin vineyards and has been widely adopted. The DOV system could be considered a medium-term strategy: it is best suited for vineyards specifically designed for DOV, with early ripening grapevine cultivars on expansive trellis systems, which ensures timely drying, and capitalizes on the fact that sunlit row middles are not needed for fruit drying. Grapevine breeding programs are currently working toward the development of raisin grape cultivars with fruitful basal nodes, with fruit that dry naturally upon ripening. This is a long-term strategy to further reduce labor needs by enabling mechanical pruning in winter and eliminating the need for cane severance in the summer.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Li Ren ◽  
Min-Rui Wang ◽  
Qiao-Chun Wang

Abstract Main conclusion Reactive oxygen species (ROS)-induced oxidative stress results in low success or even total failure of cryopreservation. Better understanding of how the plant establishes resistance/tolerance to ROS-induced oxidative stress facilitates developments of robust cryopreservation procedures. Abstract Cryopreservation provides a safe and efficient strategy for long-term preservation of plant genetic resources. ROS-induced oxidative stress caused damage to cells and reduced the ability of the plant to survive following cryopreservation, eventually resulting in low success or even total failure. This paper provides updated and comprehensive information obtained in the past decade, including the following: (1) ROS generations and adaptive responses of antioxidant systems during cryopreservation; (2) expressions of oxidative stress-associated genes and proteins during cryopreservation; (3) ROS-triggered programmed cell death (PCD) during cryopreservation; and (4) exogenous applications of enzymatic and non-enzymatic antioxidants in improving success of cryopreservation. Prospects for further studies are proposed. The goal of the present study was to facilitate better understanding of the mechanisms by which the plant establishes resistance/tolerance to oxidative stress during cryopreservation and promote further studies toward the developments of robust cryopreservation procedures and wider application of plant cryobiotechnology.


2017 ◽  
Vol 26 (3) ◽  
pp. 459-468 ◽  
Author(s):  
MILAN M. ĆIRKOVIĆ

Abstract:There are manifold intriguing issues located within largely unexplored borderlands of bioethics, future studies (including global risk analysis), and astrobiology. Human enhancement has for quite some time been among the foci of bioethical debates, but the same cannot be said about its global, transgenerational, and even cosmological consequences. In recent years, discussions of posthuman and, in general terms, postbiological civilization(s) have slowly gained a measure of academic respect, in parallel with the renewed interest in the entire field of future studies and the great strides made in understanding of the origin and evolution of life and intelligence in their widest, cosmic context. These developments promise much deeper synergic answers to questions regarding the long-term future of enhancement: how far can it go? Is human enhancement a further step toward building a true postbiological civilization? Should we actively participate and help shape this process? Is the future of humanity “typical” in the same Copernican sense as our location in space and time is typical in the galaxy, and if so, can we derive important insights about the evolutionary pathways of postbiological evolution from astrobiological and Search for ExtraTerrestrial Intelligence (SETI) studies? These and similar questions could be understood as parts of a possible unifying research program attempting to connect cultural and moral evolution with what we know and understand about their cosmological and biological counterparts.


2021 ◽  
Vol 251 ◽  
pp. 03062
Author(s):  
Harrison B. Prosper ◽  
Sezen Sekmen ◽  
Gokhan Unel ◽  
Arpon Paul

This paper presents an overview and features of an Analysis Description Language (ADL) designed for HEP data analysis. ADL is a domainspecific, declarative language that describes the physics content of an analysis in a standard and unambiguous way, independent of any computing frameworks. It also describes infrastructures that render ADL executable, namely CutLang, a direct runtime interpreter (originally also a language), and adl2tnm, a transpiler converting ADL into C++ code. In ADL, analyses are described in humanreadable plain text files, clearly separating object, variable and event selection definitions in blocks, with a syntax that includes mathematical and logical operations, comparison and optimisation operators, reducers, four-vector algebra and commonly used functions. Recent studies demonstrate that adapting the ADL approach has numerous benefits for the experimental and phenomenological HEP communities. These include facilitating the abstraction, design, optimization, visualization, validation, combination, reproduction, interpretation and overall communication of the analysis contents and long term preservation of the analyses beyond the lifetimes of experiments. Here we also discuss some of the current ADL applications in physics studies and future prospects based on static analysis and differentiable programming.


2019 ◽  
Author(s):  
Antoine Allier ◽  
Simon Teyssèdre ◽  
Christina Lehermeier ◽  
Laurence Moreau ◽  
Alain Charcosset

ABSTRACTThe narrow genetic base of elite germplasm compromises long-term genetic gain and increases the vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy is required to broaden the genetic base of commercial breeding programs while not compromising short-term variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy. We compared simulated breeding programs introducing donors with different performance levels, directly or indirectly after bridging. We also evaluated the effect of the training set composition on the success of introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the genetic diversity and increase mid- and long-term performances with only limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-term genetic gain when introducing low performing donors. The results also suggested to consider marker effects estimated with a broad training population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses.


2000 ◽  
Vol 57 (3) ◽  
pp. 581-587 ◽  
Author(s):  
Luciano Lourenço Nass ◽  
Ernesto Paterniani

Activities related to genetic resources are characterized by high cost and long term return. Thus the conservation of genetic variability for the future and the efficient utilization of available accessions are two important goals to be attained. However, the low utilization of germplasm banks is not restricted to Brazil but to other developing countries as well. Therefore, pre-breeding is a promising alternative to link genetic resources and breeding programs. Several aspects for maize are discussed such as concept, importance, methods and results. Problems to be investigated and suggestions are also presented.


2003 ◽  
Vol 13 (3) ◽  
pp. 449-454 ◽  
Author(s):  
R. Neal Peterson

The pawpaw (Asimina triloba) is a new crop in the early stages of domestication. Recently commercialization has become feasible with the availability of high quality varieties. The history of pawpaw varieties is divided into three periods: 1900-50, 1950-85, and 1985 to the present. The history before 1985 was concerned primarily with the discovery of superior selections from the wild but experienced a serious break in continuity around 1950. The third period has been characterized by greater developmental activity. Larger breeding programs have been pursued, regional variety trials initiated, a germplasm repository established, and a formal research program at Kentucky State University (KSU) instituted. Future breeding will likely rely on dedicated amateurs with the education and means to conduct a 20-year project involving the evaluation of hundreds of trees. For the foreseeable future, governments and universities will not engage in long-term pawpaw breeding.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2190
Author(s):  
Jean Carlos Bettoni ◽  
Zvjezdana Marković ◽  
Wenlu Bi ◽  
Gayle M. Volk ◽  
Toshikazu Matsumoto ◽  
...  

Grapevine (Vitis spp.) is one of the most economically important temperate fruit crops. Grapevine breeding programs require access to high-quality Vitis cultivars and wild species, which may be maintained within genebanks. Shoot tip cryopreservation is a valuable technique for the safe, long-term conservation of Vitis genetic resources that complements traditional field and in vitro germplasm collections. Vitis is highly susceptible to virus infections. Virus-free plants are required as propagation material for clonally propagated germplasm, and also for the global exchange of grapevine genetic resources. Shoot tip cryotherapy, a method based on cryopreservation, has proven to be effective in eradicating viruses from infected plants, including grapevine. This comprehensive review outlines/documents the advances in Vitis shoot tip cryopreservation and cryotherapy that have resulted in healthy plants with high regrowth levels across diverse Vitis species.


Sign in / Sign up

Export Citation Format

Share Document