scholarly journals Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Yiyu Qi ◽  
Qichun Zhang ◽  
Huaxu Zhu

AbstractHuang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.

Author(s):  
A. LeFurgey ◽  
P. Ingram ◽  
L.J. Mandel

For quantitative determination of subcellular Ca distribution by electron probe x-ray microanalysis, decreasing (and/or eliminating) the K content of the cell maximizes the ability to accurately separate the overlapping K Kß and Ca Kα peaks in the x-ray spectra. For example, rubidium has been effectively substituted for potassium in smooth muscle cells, thus giving an improvement in calcium measurements. Ouabain, a cardiac glycoside widely used in experimental and clinical applications, inhibits Na-K ATPase at the cell membrane and thus alters the cytoplasmic ion (Na,K) content of target cells. In epithelial cells primarily involved in active transport, such as the proximal tubule of the rabbit kidney, ouabain rapidly (t1/2= 2 mins) causes a decrease2 in intracellular K, but does not change intracellular total or free Ca for up to 30 mins. In the present study we have taken advantage of this effect of ouabain to determine the mitochondrial and cytoplasmic Ca content in freeze-dried cryosections of kidney proximal tubule by electron probe x-ray microanalysis.


2019 ◽  
Vol 26 (9) ◽  
pp. 664-675
Author(s):  
Sulochana Priya

Bioactive peptides are short chain of amino acids (usually 2-20) that are linked by amide bond in a specific sequence which have some biological effects in animals or humans. These can be of diverse origin like plant, animal, fish, microbe, marine organism or even synthetic. They are successfully used in the management of many diseases. In recent years increased attention has been raised for its effects and mechanism of action in various disease conditions like cancer, immunity, cardiovascular disease, hypertension, inflammation, diabetes, microbial infections etc. Bioactive peptides are more bioavailable and less allergenic when compared to total proteins. Food derived bioactive peptides have health benefits and its demand has increased tremendously over the past decade. This review gives a view on last two years research on potential bioactive peptides derived from food which have significant therapeutic effects.


2020 ◽  
Vol 16 (6) ◽  
pp. 774-781
Author(s):  
Liang Wu ◽  
An Kang ◽  
Yujie Lin ◽  
Chenxiao Shan ◽  
Zhu Zhou ◽  
...  

Background: Ilexsaponin A1, one of the most representative triterpene saponin components in the roots of I. pubescens, showed its effects in anticoagulation and antithrombosis, attenuating ischemia-reperfusion-induced myocardial, angiogenesis and inhibiting phosphodiesterase. Objective: Reveal the key intestinal bacterial strains responsible for ilexsaponin A1 metabolism, and clarify their metabolic behavior. Methods: An accurate and sensitive LC-MS/MS method for the determination of “ilexsaponin A1 in General Anaerobic Medium (GAM) broth” was established and systematically validated. Then it was applied to screen and study the metabolic potential of the intestinal bacterial strains in an anaerobic incubation system. Results: Quantitation of ilexsaponin A1 could be performed within an analytical run time of 14.5 min, in the linear range of 2 - 2000 ng/ml. Enterobacter sakazakii, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium angulatum were identified to have a potential effect to metabolize ilexsaponin A1 to different extents; and further bacterial metabolic studies were performed to clarify their metabolic capacity and behavior. Conclusion: This paper contributes to a better understanding of the intestinal bacterial metabolism of ilexsaponin A1 and provides scientific evidence for its clinical application. Additionally, the importance of intestinal bacterial strains in the disposition of natural products was also highlighted.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ting Sun ◽  
Yiyuan Kang ◽  
Jia Liu ◽  
Yanli Zhang ◽  
Lingling Ou ◽  
...  

AbstractThe widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 712
Author(s):  
Wei-Yun Lai ◽  
Yen-Jen Chen ◽  
Alvin Kai-Xing Lee ◽  
Yen-Hong Lin ◽  
Yu-Wei Liu ◽  
...  

Worldwide, the number of bone fractures due to traumatic and accidental injuries is increasing exponentially. In fact, repairing critical large bone defects remains challenging due to a high risk of delayed union or even nonunion. Among the many bioceramics available for clinical use, calcium silicate-based (CS) bioceramics have gained popularity due to their good bioactivity and ability to stimulate cell behavior. In order to improve the shortcomings of 3D-printed ceramic scaffolds, which do not easily carry growth factors and do not provide good tissue regeneration effects, the aim of this study was to use a gelatin-coated 3D-printed magnesium-doped calcium silicate (MgCS) scaffold with genipin cross-linking for regulating degradation, improving mechanical properties, and enhancing osteogenesis behavior. In addition, we consider the effects of fibroblast growth factor-2 (FGF-2) loaded into an MgCS scaffold with and without gelatin coating. Furthermore, we cultured the human Wharton jelly-derived mesenchymal stem cells (WJMSC) on the scaffolds and observed the biocompatibility, alkaline phosphatase activity, and osteogenic-related markers. Finally, the in vivo performance was assessed using micro-CT and histological data that revealed that the hybrid bioscaffolds were able to further achieve more effective bone tissue regeneration than has been the case in the past. The above results demonstrated that this type of processing had great potential for future clinical applications and studies and can be used as a potential alternative for future bone tissue engineering research, as well as having good potential for clinical applications.


2021 ◽  
Author(s):  
Junchao Wang ◽  
Wenjuan Xu ◽  
Rongjuan Wang ◽  
Rongrong Cheng ◽  
Zhengquan Tang ◽  
...  

Akkermansia muciniphila is a probiotic inhabiting host intestinal mucus layers and displays evident easing or therapeutic effects on host enteritis and metabolic disorders such as obesity and diabetes. The outer...


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 709 ◽  
Author(s):  
David F. Lambert ◽  
John E. Sherwood ◽  
Paul S. Francis

Although the dominant methods for the determination of urea in clinical applications incorporate selective enzymatic hydrolysis of urea, the determination of urea in soil extracts is complicated by the presence of urease inhibitors. The spectrophotometric determination of urea with an acidic solution diacetyl monoxime and semicarbazide is a viable option but traditional manual procedures are time-consuming. New variations on these procedures, based on microplates or flow-injection analysis methodologies, allow a far greater number of samples to be analysed with high precision and sensitivity.


2021 ◽  
Vol 11 (7) ◽  
pp. 1024-1030
Author(s):  
Li Zhang ◽  
Miao Xu ◽  
Min Zhu ◽  
Andong Liu ◽  
Fenghua Zhao

Tissue plasminogen activator (rt-PA) is a thrombolytic drug used for the treatment of stroke. However, it has a short half-life and a high risk of complications of cerebral hemorrhage, which complicates its use in clinical applications. In this study, polyethylene glycol and polycaprolactone were used as nano-carriers in the development of new nano-drug-recombinant plasminogen activator modified nanoparticles (PEG-PCL@rt-PA) loaded with rt-PA. Following treatment, the patients received with either conventional nursing or continuous nursing. Compared with traditional treatment and nursing, the nanoparticles had stronger thrombolytic and therapeutic effects, significantly improved the self-care recovery rate of patients, and reduced the occurrence of complications. This new mode of PEG-PCL@rt-PA drug therapy combined with continuous nursing is expected to improve the recovery and survival rates of stroke patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lunjie Lu ◽  
Jun Zhou ◽  
Jingying Zhang ◽  
Jun Che ◽  
Yang Jiao ◽  
...  

Tanshinone IIA sodium sulfonate (TSS) is a water-soluble derivative of tanshinone IIA, which is the main pharmacologically active component of Salvia miltiorrhiza. This study aimed to verify the preventive and therapeutic effects of TSS and its combined therapeutic effects with magnesium isoglycyrrhizinate (MI) in D-galactosamine- (D-Gal-) induced acute liver injury (ALI) in mice. The potential regulatory mechanisms of TSS on ALI were also examined. Our results may provide a basis for the development of novel therapeutics for ALI.


Sign in / Sign up

Export Citation Format

Share Document