scholarly journals Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy

Author(s):  
Baokang Wu ◽  
Chongli Zhong ◽  
Qi Lang ◽  
Zhiyun Liang ◽  
Yizhou Zhang ◽  
...  

AbstractImmune checkpoint molecules, also known as cosignaling molecules, are pivotal cell-surface molecules that control immune cell responses by either promoting (costimulatory molecules) or inhibiting (coinhibitory molecules) a signal. These molecules have been studied for many years. The application of immune checkpoint drugs in the clinic provides hope for cancer patients. Recently, the poliovirus receptor (PVR)-like protein cosignaling network, which involves several immune checkpoint receptors, i.e., DNAM-1 (DNAX accessory molecule-1, CD226), TIGIT (T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM)), CD96 (T cell activation, increased late expression (TACLILE)), and CD112R (PVRIG), which interact with their ligands CD155 (PVR/Necl-5), CD112 (PVRL2/nectin-2), CD111 (PVRL1/nectin-1), CD113 (PVRL3/nectin-3), and Nectin4, was discovered. As important components of the immune system, natural killer (NK) and T cells play a vital role in eliminating and killing foreign pathogens and abnormal cells in the body. Recently, increasing evidence has suggested that this novel cosignaling network axis costimulates and coinhibits NK and T cell activation to eliminate cancer cells after engaging with ligands, and this activity may be effectively targeted for cancer immunotherapy. In this article, we review recent advances in research on this novel cosignaling network. We also briefly outline the structure of this cosignaling network, the signaling cascades and mechanisms involved after receptors engage with ligands, and how this novel cosignaling network costimulates and coinhibits NK cell and T cell activation for cancer immunotherapy. Additionally, this review comprehensively summarizes the application of this new network in preclinical trials and clinical trials. This review provides a new immunotherapeutic strategy for cancer treatment.

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2795-2795
Author(s):  
Rina M Mbofung ◽  
Alan M Williams ◽  
Ken Hayama ◽  
Yijia Pan ◽  
Brian Groff ◽  
...  

Abstract Allogeneic off-the-shelf cell therapies offer distinct advantages over conventional autologous cell therapies in terms of scaled manufacturing, on-demand availability and optimization of cellular starting material. A unique consideration in the use of allogeneic cell therapies is the potential for immune cell-mediated recognition of the allogeneic cell product by the patient's immune system. CAR T-cell therapies are commonly combined with conditioning chemotherapies that suppress a patient's immune system, creating a suitable window of activity to elicit clinical response. However, protracted lympho-conditioning also affects immune reconstitution and can negatively impact the rate of infection. Alternative approaches to prevent allorejection may therefore help to enhance the efficacy of the therapy while preserving the immune system of the patient. Elimination of cell-surface human leukocyte antigen (HLA) molecule expression by genetic knockout (KO) has long been known to abrogate T-cell reactivity. However, loss of class I HLA elicits NK cell-mediated recognition and clearance, and therefore must be combined with other immune-modulating strategies to limit host NK cell reactivity. Allogeneic models combining class I HLA deletion with NK cell inhibitory molecules, such as HLA-E and CD47, have been shown to abrogate NK cell reactivity in mouse models. However, HLA-E is the canonical activator of NKG2C, a dominant activating receptor found on human NK cells. Likewise, the expression of signal regulatory protein alpha (SIRPα), the major interactor for CD47, is mostly restricted to macrophages and dendritic cells and not human NK cells, and the observed effects of this immune-modulating strategy in the mouse system may only offer partial or incomplete immune evasion in the human system. In this study, we provide details of a bona fide off-the-shelf strategy where iPSC-derived NK (iNK) cell therapy is multiplexed engineered with a novel combination of immune-evasion modalities; beta 2 microgobulin (B2M) KO to prevent CD8 T-cell mediated rejection; class II transactivator (CIITA) KO to prevent CD4 T-cell mediated rejection; and CD38 KO to enable combination with anti-CD38 mAbs, which can be administered to deplete host alloreactive lymphocytes, including both NK and T cells. In vitro mixed lymphocyte reaction (MLR) data demonstrated that upon co-culture with allogeneic PBMCs, B2M KO iNK cells stimulated less T-cell activation than their B2M sufficient counterparts as evidenced by reduced CD38, 41BB, and CD25 levels on T cells. Additionally, B2M KO iNK cells impaired T-cell expansion over the duration of co-culture, resulting in a 50% decrease in expansion at the peak of the control response. However, B2M KO iNK cells were depleted over time, suggesting activation of an NK cell "missing self" response by the peripheral blood NK (pbNK) cells. In contrast, when the assay was performed in the presence of anti-CD38 mAb, depletion of B2M KO iNK cells was blocked, and instead B2M KO iNK cell numbers increased by 3.5-fold, comparable to the iNK cell numbers found in the control arm (cultured without allogeneic PBMCs). Interestingly, pbNK cell numbers decreased, while T-cell activation and expansion remained lower than in B2M-sufficient MLR cultures. Furthermore, when B2M KO iNK cells were cocultured with tumor cells and anti-CD38 mAb in vitro, ADCC was comparable to the B2M sufficient cells, indicating uncompromised effector function. Finally, in vivo studies suggested that co-administration of anti-CD38 mAbs can significantly enhance the persistence of B2M KO iNK cells in the presence of allogeneic pbNK cells as seen in the spleen and bone marrow (Figure 1). Together these data demonstrate that the combination of triple-gene knockout of CD38, B2M and CIITA with a CD38-targeting mAb is an effective strategy to avoid host immune rejection, and highlights the potential advantages of multiplexed engineered iPSCs to facilitate large-scale manufacture of complex engineered, off-the-shelf cellular therapies. Figure 1 Figure 1. Disclosures Williams: Fate Therapeutics: Current Employment. Malmberg: Merck: Research Funding; Vycellix: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Lee: Fate Therapeutics, Inc.: Current Employment. Bjordahl: Fate Therapeutics: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e21025-e21025
Author(s):  
Anthony L. Schwartz ◽  
Pulak Nath ◽  
Elizabeth Lessey-Morillon ◽  
Lisa Ridnour ◽  
Michael Allgaeuer ◽  
...  

e21025 Background: Irradiation (IR) combined with chemotherapy is the post-surgical standard of care treatment for melanoma, but metastasis still results in high mortality rates. Immune checkpoint inhibitors such as cytotoxic T-lymphocyte antigen-4 (CTLA4) have proven effective for immunotherapy of melanoma. CTLA-4 is up-regulated post-T cell activation and blockade enhances tumor responses in immunocompetent rodents and humans. Trials suggest that combinations of immune checkpoint inhibitors are more efficacious than single agents, but tumors remain resistant. We are investigating CD47 blockade for the treatment of cancer. CD47 is frequently elevated in cancers and serves as an inhibitory receptor for thrombospondin-1 on immune cells in the tumor stroma. CD47 blockade on CD8 T or tumor cells significantly enhances immune-targeted tumor cell killing post-IR compared to IR alone. Here we explore the potential for antisense CD47 and anti-CTLA4 therapy alone or in combination with IR using a syngeneic mouse melanoma model. Methods: C57BL/6 mice were inoculated with 1x106B16F10 melanoma cells in the hind limb and treated with 10 Gy IR combined with CTLA4 blocking antibody, CD47 translational blocking morpholino, or the combination of CTLA4/CD47 therapies. Granzyme B along with CD4/CD8 T cell infiltration were examined in tumors. Histology was evaluated for CD3 and necrosis. Results: The combination of CD47/CTLA4 with IR significantly increased survival by 25% compared to IR/CTLA4 alone at 50 days. Granzyme B expression was significantly increased in IR mice with CTLA4/CD47 combination, which correlated with infiltration of CD8+ T cells and a concomitant decrease in Gr1+CD11b suppressor cells compared to controls. In non-IR tumors, histology revealed minimal necrosis, while all IR groups showed increased necrosis. Tumor IR in combination with CTLA4 or CD47 increased immune cell infiltration. However, the combination of IR with CTLA4/CD47 showed widespread necrosis. All groups treated with the CD47 exhibited focal hemorrhage, which was more extensive when combined with CTLA4. Conclusions: Results herein suggest IR combined CTLA4/CD47 checkpoint blockade provides a survival benefit by activating a beneficial adaptive immune response.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2629-2629 ◽  
Author(s):  
Tony Navas ◽  
Kristin Fino ◽  
King Leung Fung ◽  
Facundo Cutuli ◽  
Robert J. Kinders ◽  
...  

2629 Background: Immune checkpoint inhibitors promote antitumor immune responses by enhancing T-cell activity. Measuring the pharmacodynamic effects of these drugs is challenging, as it requires assessing both immune cell and cancer cell populations. To evaluate T cell activation in tumor tissue from patient biopsies, we developed a robust multiplexed immunofluorescence assay. Methods: Our assay uses novel oligo-conjugated antibodies (Ultivue) for simultaneous quantitation of TCR activation (phospho-CD3zeta), immune checkpoint signaling via PD-1 (p-SHP1/p-SHP2), and the net stimulation/inhibition resulting from the integration of these two pathways in CD8 cells (p-ZAP70), while also providing the proximity of CD8 cells to tumor tissues, identified by β-catenin. The method was clinically validated using custom tissue microarrays (TMA) containing tumor biopsies of 3 different histologies (CRC, NSCLC, and breast). Results: From a total of 192 tumor core biopsies, 20/64 NSCLC, 9/64 CRC, and 3/65 breast TMA cores were found to have a significant number of CD8+ tumor infiltrating lymphocytes (TILs) at baseline ( > 50 cells in the examined section). In 18 of the 20 NSCLC cores, ≥50% of CD8 cells both inside and outside of the tumor were activated (CD3z-pY142+). In 6/9 CRC cores, ≥50% of CD8+ cells inside tumor tissues were activated, and in 4/9 CRC cores, ≥50% of CD8+ cells in stroma were activated. In 2/3 breast tumor cores, 90% of CD8+ cells inside tumor tissues were activated; in the remaining core, 90% of CD8+ cells in stroma were activated. Interestingly, all 192 cores had minimal to no expression of activated Zap70 (pY493) in CD8+ cells. Conclusions: Depending on tumor histology, baseline biopsy samples may contain variable numbers of activated CD8+ TILs (CD3z-pY142+), which may reside inside or outside of tumor regions and express very low levels of Zap70-pY493. Anti-PD-1 therapy is predicted to enhance T-cell cytotoxic activity, as demonstrated by an increased number of TILs and elevated Zap70-pY493 expression. This assay is being used for pharmacodynamic evaluations in ongoing immunotherapy clinical trials. Funded by NCI Contract No HHSN261200800001E.


2020 ◽  
Vol 21 (10) ◽  
pp. 3736
Author(s):  
Andrés Tittarelli ◽  
Mariela Navarrete ◽  
María Alejandra Gleisner ◽  
Peter Gebicke-Haerter ◽  
Flavio Salazar-Onfray

The immunological synapse (IS) is an intercellular communication platform, organized at the contact site of two adjacent cells, where at least one is an immune cell. Functional IS formation is fundamental for the modulation of the most relevant immune system activities, such as T cell activation by antigen presenting cells and T cell/natural killer (NK) cell-mediated target cell (infected or cancer) killing. Extensive evidence suggests that connexins, in particular connexin-43 (Cx43) hemichannels and/or gap junctions, regulate signaling events in different types of IS. Although the underlying mechanisms are not fully understood, the current evidence suggests that Cx43 channels could act as facilitators for calcium ions, cyclic adenosine monophosphate, and/or adenosine triphosphate uptake and/or release at the interface of interacting cells. These second messengers have relevant roles in the IS signaling during dendritic cell-mediated T and NK cell activation, regulatory T cell-mediated immune suppression, and cytotoxic T lymphocyte or NK cell-mediated target tumor cell killing. Additionally, as the cytoplasmic C-terminus domain of Cx43 interacts with a plethora of proteins, Cx43 may act as scaffolds for integration of various regulatory proteins at the IS, as suggested by the high number of Cx43-interacting proteins that translocate at these cell-cell interface domains. In this review, we provide an updated overview and analysis on the role and possible underlying mechanisms of Cx43 in IS signaling.


Author(s):  
Thamrook s Shajahan ◽  
Shaiju S Dharan ◽  
Merlin Nj

Activating the immune system to eliminate cancer cells and produce clinically relevant response has been a long standing goal of cancer research. Most promising therapeutic approaches of activating antitumor immunity include immune checkpoint inhibitors. Our immune system protect us from disease, killing bacteria and virus. One main type of immune cell called T-cells. T-cells have protein that turn it off. These are called checkpoint. Immune checkpoint are accessory molecules that either promote or inhibit T-cell activation. Checkpoint inhibitor are a type of immunotherapy. They block protein that stops the immune system from attacking the cancer cells. Checkpoint inhibitor are a type of monoclonal antibody or targeted treatment. Immune system cells, such as T-cells and Antigen presenting cells (APCs), defend and protect the body. Immune system play an important role in controlling and eradicating cancer. Cytotoxic T lymphocytes associated protein 4(CTLA-4) and Programmed cell dealth protein (PD-1) are checkpoint protein which is the negative regulation of T-cell immune function. Inhibition of the target, results in increased activation of immune system.


Author(s):  
Nicolas Aubert ◽  
Simon Brunel ◽  
Daniel Olive ◽  
Gilles Marodon

The Herpes Virus Entry Mediator (HVEM) delivers a negative signal to T cells mainly through the B and T Lymphocyte Attenuator (BTLA) molecule and thus, could represent a novel immune checkpoint during an anti-tumor immune response. A formal demonstration that HVEM can be targeted for cancer immunotherapy is however still lacking. Here, we first show that HVEM and BTLA were associated to a worse prognosis in patients with prostate adenocarcinomas, indicating a detrimental role for this pair of molecule during prostate cancer progression. We then show that a monoclonal antibody to human HVEM significantly impacted the growth of a prostate cancer cell line in immuno-compromised NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that HVEM expression by the tumor was mandatory to observe the therapeutic effect. Mechanistically, tumor control was dependent on CD8+ T cells and was associated to an increase in the proliferation and number of tumor-infiltrating leukocytes. Accordingly, the expression of genes belonging to various T cell activation pathways were enriched in tumor infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM was an immune checkpoint for T-cell mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chie Miyabe ◽  
Yupeng Dong ◽  
Takaharu Ikeda ◽  
Kazuo Takahashi ◽  
Yoshishige Miyabe ◽  
...  

AbstractDysfunction of immunoinhibitory signals and persistent T cell activation reportedly play important roles in the development of vasculitis. The skin is one of the most accessible organs, and it is suitable for the characterization of immune cell signatures. However, the inhibitory checkpoint molecules in the skin and their relevance to vasculitis have not been studied. Here, we investigated the profile of immune checkpoint molecules in the skin and peripheral blood of patients with vasculitis and healthy donors. We found that some of the inhibitory checkpoint molecules, including programmed cell death 1 receptor (PD-1), were elevated in T-cells in the blood of patients with systemic and cutaneous vasculitis. In addition, programmed death-ligand 1 (PD-L1) expression was elevated in the skin of patients with cutaneous vasculitis. Histologically, PD-L1 was highly expressed in the vessels in the skin along with CD4+ and CD8+ T-cell infiltration in patients with cutaneous vasculitis. Notably, plasma soluble PD-L1 levels were increased, and these correlated with C-reactive protein in patients with systemic vasculitis. Our findings suggest that inhibitory checkpoint molecules might be differentially modulated in the skin and peripheral blood of patients with vasculitis, and that the alteration of the PD-L1/PD-1 axis may be associated with the regulation of T-cell activation in vasculitis.


Author(s):  
Nicolas Aubert ◽  
Simon Brunel ◽  
Daniel Olive ◽  
Gilles Marodon

The Herpes Virus Entry Mediator (HVEM) delivers a negative signal to T cells mainly through the B and T Lymphocyte Attenuator (BTLA) molecule and thus, could represent a novel immune checkpoint during an anti-tumor immune response. A formal demonstration that HVEM can be targeted for cancer immunotherapy is however still lacking. Here, we first show that HVEM and BTLA were associated to a worse prognosis in patients with prostate adenocarcinomas, indicating a detrimental role for this pair of molecule during prostate cancer progression. We then show that a monoclonal antibody to human HVEM significantly impacted the growth of a prostate cancer cell line in immuno-compromised NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that HVEM expression by the tumor was mandatory to observe the therapeutic effect. Mechanistically, tumor control was dependent on CD8+ T cells and was associated to an increase in the proliferation and number of tumor-infiltrating leukocytes. Accordingly, the expression of genes belonging to various T cell activation pathways were enriched in tumor infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM was an immune checkpoint for T-cell mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document