scholarly journals Therapeutic potential of oxadiazole or furadiazole containing compounds

BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Ankit Siwach ◽  
Prabhakar Kumar Verma

AbstractAs we know that, Oxadiazole or furadi azole ring containing derivatives are an important class of heterocyclic compounds. A heterocyclic five-membered ring that possesses two carbons, one oxygen atom, two nitrogen atoms, and two double bonds is known as oxadiazole. They are derived from furan by the replacement of two methylene groups (= CH) with two nitrogen (-N =) atoms. The aromaticity was reduced with the replacement of these groups in the furan ring to such an extent that it shows conjugated diene character. Four different known isomers of oxadiazole were existed such as 1,2,4-oxadiazole, 1,2,3-oxadiazole, 1,2,5-oxadiazole & 1,3,4-oxadiazole. Among them, 1,3,4-oxadiazoles & 1,2,4-oxadiazoles are better known and more widely studied by the researchers due to their broad range of chemical and biological properties. 1,3,4-oxadiazoles have become important synthons in the development of new drugs. The derivatives of the oxadiazole nucleus (1,3,4-oxadiazoles) show various biological activities such as antibacterial, anti-mycobacterial, antitumor, anti-viral and antioxidant activity, etc. as reported in the literature. There are different examples of commercially available drugs which consist of 1,3,4-oxadiazole ring such as nitrofuran derivative (Furamizole) which has strong antibacterial activity, Raltegravir as an antiviral drug and Nesapidil drug is used in anti-arrhythmic therapy. This present review summarized some pharmacological activities and various kinds of synthetic routes for 2, 5-disubstituted 1,3,4-oxadiazole, and their derived products.

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ankit Siwach ◽  
Prabhakar Kumar Verma

Abstract Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antimycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoebic, antihelmintic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal), metronidazole, nitroso-imidazole (bactericidal), megazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin's disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products.


Author(s):  
Sunny Jalhan

In this review article data is collected regarding the various derivatives of coumarin and oxadiazole as both these have wide range of biological activities and they can be further modified to synthesize more effective and potent drugs. Coumarin class of organic compounds consists of 1,2-benzopyrone ring system as a basic parent scaffold. These benzopyrones are subdivided into alpha-benzopyrones and gamma benzopyrones; with coumarin class of compounds belonging to alpha-benzopyrones. Since the last few years, coumarins were synthesized in many of their derivative forms. Their pharmacological, therapeutic and biochemical properties depend upon their pattern of substitution. Coumarins exhibit a wide range of pharmacological activities, which includes anti-diabetic, anti-viral, anti-microbial, anticancer, anti-oxidant, anti-parasitic, anti-helminthic, anti-proliferative, anti-convulsant, anti-inflammatory and antihypertensive activities. 1,3,4-Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. It is derived from furan by substitution of two methylene groups (=CH) with two pyridine type nitrogens (-N=). There are three known isomers: 1,2,4-oxadiazole, 1,2,3-oxadiazole and 1,2,5- oxadiazole. Oxadiazole moiety shows antimicrobial, anticancer and anti-inflammatory activity and suitably substituted 1,3,4-oxadiazole having biological activities like antimicrobial, anticancer and other biological activities.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1784
Author(s):  
Azher Arafah ◽  
Muneeb U. Rehman ◽  
Tahir Maqbool Mir ◽  
Adil Farooq Wali ◽  
Rayeesa Ali ◽  
...  

Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.


Author(s):  
SAGMA EG ◽  
BASKAR LAKSHMANAN

Pyrimidine nucleus exhibited remarkable pharmacological activities. The review of an article indicates that the compounds having pyrimidine nucleus have a wide range of therapeutic uses that include antiviral, anti-inflammatory, antibacterial, anticancer, antiviral, anti-HIV, antihypertensive, sedatives and hypnotics, anticonvulsant, and antihistaminic. This review article is intended to describe the antiviral activity of a compound containing the pyrimidine nucleus. The chemistry of pyrimidine is a thriving field for the study of their pharmacological uses. Numerous methods for the synthesis of pyrimidine as also their diverse reactions offer enormous scope in the field of medicinal chemistry. The review article aims to reveal the work reported on the antiviral synthetic pyrimidine compound and the chemistry and biological activities of pyrimidine during the past few decades. During this review article, we are mainly focusing the viral activities in different derivatives of pyrimidine nucleus. Therefore, we are going to discuss some important issues such as the good ideas to resist our increasing viral disease and the importance of a pyrimidine nucleus in the viral drugs. Hence, these are the main things we are going to discuss in this article.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


Author(s):  
Nohemí del C. Reyes-Vázquez ◽  
Laura A. de la Rosa ◽  
Juan Luis Morales-Landa ◽  
Jorge Alberto García-Fajardo ◽  
Miguel Ángel García-Cruz

Background: The pecan nutshell contains phytochemicals with various biological activities that are potentially useful in the prevention or treatment of diseases such as cancer, diabetes, and metabolic imbalances associated with heart diseases. Objective: To update this topic by means of a literature review and include those that contribute to the knowledge of the chemical composition and biological activities of pecan nutshell, particularly of those related to the therapeutic potential against some chronic degenerative diseases associated with oxidative stress. Method: Exhaustive and detailed review of the existing literature using electronic databases. Conclusion: The pecan nutshell is a promising natural product with pharmaceutical uses in various diseases. However, additional research related to the assessment of efficient extraction methods and characterization, particularly the evaluation of the mechanisms of action in new in vivo models, is necessary to confirm these findings and development of new drugs with therapeutic use.


2021 ◽  
Vol 4 (2) ◽  
pp. 47-53
Author(s):  
N. Y. Monka ◽  
◽  
N. E. Stadnytska ◽  
I. R. Buchkevych ◽  
K. O. Kaplia ◽  
...  

Benzoquinone and its reduced form hydroquinone belong to phenolic compounds and are found in living organisms in free form or in glycosides. They are active substances of some medicinal plants and have a pharmacological effect on the human body. Accordingly, their derivatives are important objects for chemical synthesis and development of new drugs. This article presents the findings of the structural design of substances with benzoquinone or hydroquinone fragment and sulfur-containing compound. By use of appropriate on-line programs a predictive screening of the biological activity and cytotoxicity of thiosulfonate derivatives of benzoquinone and hydroquinone has been conducted. It has been found that they have immense methodological potential to be synthesized by substances with a wide range of biological activities and a high value of probable activity, which substantiates the feasibility of conducting experimental studies on their biological activity, particularly anticancer.


Author(s):  
Ishwar Bhat K ◽  
Abhishek Kumar

Objective: Many derivatives of pyrimidine are known for the broad-spectrum biological activities such as antimicrobial, antitumor, antibacterial, antitubercular, anti-inflammatory, and cytotoxic activity. Chalcones with an enone group show potent pharmacological activities such as antiinflammatory, antibacterial, antifungal, and antimalarial activity. A series of pyrimidines from chalcones have been synthesized and screened for anti-inflammatory and cytotoxic activity studies.Methods: Chalcones [1-(4-nitrophenyl)-3-substituted-phenylprop-2-en-1-one] were synthesized from various substituted aldehydes with 4-nitroacetophenone and cyclized with urea and glacial acetic acid to give pyrimidine derivatives [4-(4-nitrophenyl)-6-substituted-phenylpyrimidin-2-ol].Results: Anti-inflammatory and cytotoxic activity studies revealed that some of the synthesized compounds have shown significant activity.Conclusion: The observed results proved that pyrimidines are found to be interesting lead molecules for the synthesis of anti-inflammatory and cytotoxic agents


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Jasmine Speranza ◽  
Natalizia Miceli ◽  
Maria Fernanda Taviano ◽  
Salvatore Ragusa ◽  
Inga Kwiecień ◽  
...  

Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095364
Author(s):  
Yang Song ◽  
Elise Fields

During the coronavirus disease 2019 (COVID-19) pandemic, numerous existing chemicals have been screened for antiviral potential against the emerging coronavirus severe acute respiratory syndrome coronavirus 2. Chloroquine and hydroxychloroquine, after exhibiting potent in vitro efficacy, have gained tremendous attention. Both therapeutics are derivatives of natural alkaloid quinine and were first synthesized to treat malaria. Thereafter, the pharmaceutical applications of the agents have expanded to many new areas. In this article, the medicinal history and pharmacological activities of chloroquine and hydroxychloroquine are summarized. Antimalarial, anti-inflammatory, antitumor, antiviral properties, and therapeutic potential in the emerging viral infection COVID-19 are discussed. Pharmacokinetics, adverse effects, and toxicities are reviewed.


Sign in / Sign up

Export Citation Format

Share Document