scholarly journals Metabolic profiling of liver and faeces in mice infected with echinococcosis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingxing Zhu ◽  
Xiancai Du ◽  
Hongxia Xu ◽  
Songhao Yang ◽  
Chan Wang ◽  
...  

Abstract Background Echinococcosis is a severe zoonotic parasitic disease which severely affects the health of the hosts. The diagnosis of echinococcosis depends mainly on imaging examination. However, the patient is often in the late stage of the disease when the symptoms appear, thus limiting the early diagnosis of echinococcosis. The treatment and prognosis of the patients are hampered because of long-term asymptomatic latency. Metabolomics is a new discipline developed in the late 1990s. It reflects a series of biological responses in pathophysiological processes by demonstrating the changes in metabolism under the influence of internal and external factors. When the organism is invaded by pathogens, the alteration in the characteristics of metabolites in cells becomes extremely sensitive. Here, we used a metabolomics approach involving liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) to determine the molecular mechanism of cystic echinococcosis (CE) and to develop an effective method for CE diagnosis. Methods Twenty 8-week-old female BALB/c mice were divided into normal and Echinococcus granulosus infection groups. To develop the E. granulosus infection model, mice were infected with protoscoleces. Six weeks later, the abdomens of the mice showed significant bulging. An LC–MS/MS system-based metabolomics approach was used to analyse the liver and faeces to reveal the metabolic profiles of mice with echinococcosis. Results We found that the metabolism of nucleotides, alkaloids, amino acids, amides, and organic acids in mice is closely interrelated with E. granulosus infection. In the liver, the metabolic pathways of tyrosine and tryptophan biosynthesis; phenylalanine, valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were notably associated with the occurrence and development of hydatid disease, and in the faeces, pantothenate and CoA biosynthesis are thought to be closely associated with the development of CE. Conclusion The metabolomics approach used in this study provides a reference for a highly sensitive and specific diagnostic and screening method for echinococcosis. Graphic Abstract

2021 ◽  
Author(s):  
Mingxing Zhu ◽  
Xiancai Du ◽  
Hongxia Xu ◽  
Songhao Yang ◽  
Chan Wang ◽  
...  

Abstract Background: Echinococcosis is a severe zoonotic parasitic disease, which seriously affects the health of the hosts. The diagnosis of echinococcosis depends on objective detection of clinical symptoms. However, the patient is often in the late stage of the disease when the symptoms appear, limiting the early diagnosis of echinococcosis. The treatment and prognosis of the patients are seriously hampered due to long-term asymptomatic latency. Metabolomics is a new discipline developed in the late 1990s. It reflects a series of biological responses in a pathophysiological process by demonstrating the changes in metabolism under the influence of internal and external factors. When the organism is invaded by pathogens, the alteration in characteristics of metabolites in cells becomes exceedingly sensitive. Here, we used a liquid chromatography with tandem mass spectrometry (LC-MS/MS) system-based metabolomics approach to determine the molecular mechanism of cystic echinococcosis (CE) and to develop an effective method for CE diagnosis. Methods: Eight-weeks-old female Balb/c mice were divided into normal and Echinococcus granulosus infection groups. To develop the Echinococcus granulosus infection model, mice were infected with protoscolex. Six weeks later, the abdomen of mice was obviously bulged. An LC-MS/MS system-based metabolomics approach was used for the analysis of the liver and feces to reveal the metabolic profiles of mice with echinococcosis. Results: We found that the metabolism of nucleotides, alkaloids, amino acids, amides, and organic acids in mice is closely interrelated with Echinococcus granulosus infectionConclusion: The metabolomics approach used in this study provides a reference for a highly sensitive and specific diagnostic and screening method for echinococcosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ensieh Khalkhal ◽  
Mostafa Rezaei-Tavirani ◽  
Fariba Fathi ◽  
B. Fatemeh Nobakht M. Gh ◽  
Amir Taherkhani ◽  
...  

Background. Celiac disease (CeD) is an autoimmune intestinal disorder caused by gluten protein consumption in genetically predisposed individuals. As biopsy sampling is an invasive procedure, finding novel noninvasive serological markers for screening of at-risk CeD population is a priority. Metabolomics is helpful in monitoring metabolite changes in body fluids and tissues. In the present study, we evaluated serum metabolite levels of CeD patients relative to healthy controls with the aim of introducing new biomarkers for population screening. Method. We compared the serum metabolic profile of CeD patients ( n = 42 ) and healthy controls ( n = 22 ) using NMR spectroscopy and multivariate analysis. Result. 25 metabolites were identified by serum metabolic profiling. Levels of 3-hydroxyisobutyric acid and isobutyrate showed significant differences in CeD patients’ samples compared with healthy controls ( p < 0.05 ). According to pathway analysis, our data demonstrated that changes in nine metabolic pathways were significantly disrupted/affected in patients with CeD. These enriched pathways are involved in aminoacyl-tRNA biosynthesis; primary bile acid biosynthesis; nitrogen metabolism; glutamine and glutamate metabolism; valine, leucine, and isoleucine biosynthesis and degradation; taurine and hypotaurine metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and arginine biosynthesis. Conclusion. In summary, our results demonstrated that changes in the serum level of 25 metabolites may be useful in distinguishing CeD patients from healthy controls, which have the potential to be considered candidate biomarkers of CeD.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Danxia Yu ◽  
Yaohua Yang ◽  
Jirong Long ◽  
Wanghong Xu ◽  
Qiuyin Cai ◽  
...  

ABSTRACT Background Diet is known to affect human gut microbiome composition; yet, how diet affects gut microbiome functionality remains unclear. Objective We compared the diversity and abundance/presence of fecal microbiome metabolic pathways among individuals according to their long-term diet quality. Methods In 2 longitudinal cohorts, we assessed participants’ usual diets via repeated surveys during 1996–2011 and collected a stool sample in 2015–2018. Participants who maintained a healthy or unhealthy diet (i.e., stayed in the highest or lowest quintile of a healthy diet score throughout follow-up) were selected. Participants were excluded if they reported a history of cancer, cardiovascular disease, diabetes, or hypertension; had diarrhea or constipation in the last 7 d; or used antibiotics in the last 6 mo before stool collection. Functional profiling of shotgun metagenomics was performed using HUMAnN2. Associations of dietary variables and 420 microbial metabolic pathways were evaluated via multivariable-adjusted linear or logistic regression models. Results We included 144 adults (mean age = 64 y; 55% female); 66 had an unhealthy diet and 78 maintained a healthy diet. The healthy diet group had higher Shannon α-diversity indexes of microbial gene families and metabolic pathways (both P &lt; 0.02), whereas β-diversity, as evaluated by Bray-Curtis distance, did not differ between groups (both P &gt; 0.50). At P &lt; 0.01 [false discovery rate (FDR) &lt;0.15], the healthy diet group showed enriched pathways for vitamin and carrier biosynthesis (e.g., tetrahydrofolate, acetyl-CoA, and l-methionine) and tricarboxylic acid (TCA) cycle, and increased degradation (or reduced biosynthesis) of certain sugars [e.g., cytidine monophosphate (CMP)-legionaminate, deoxythymidine diphosphate (dTDP)-l-rhamnose, and sucrose], nucleotides, 4-aminobutanoate, methylglyoxal, sulfate, and aromatic compounds (e.g., catechol and toluene). Meanwhile, several food groups were associated with the CMP-legionaminate biosynthesis pathway at FDR &lt;0.05. Conclusions In a small longitudinal study of generally healthy, older Chinese adults, we found long-term healthy eating was associated with increased α-diversity of microbial gene families and metabolic pathways and altered symbiotic functions relevant to human nutrition and health.


2021 ◽  
Vol 22 (12) ◽  
pp. 6274
Author(s):  
María Fernández ◽  
Alicia de de Coo ◽  
Inés Quintela ◽  
Eliane García ◽  
Márcio Diniz-Freitas ◽  
...  

Severe periodontitis is prevalent in Down syndrome (DS). This study aimed to identify genetic variations associated with periodontitis in individuals with DS. The study group was distributed into DS patients with periodontitis (n = 50) and DS patients with healthy periodontium (n = 36). All samples were genotyped with the “Axiom Spanish Biobank” array, which contains 757,836 markers. An association analysis at the individual marker level using logistic regression, as well as at the gene level applying the sequence kernel association test (SKAT) was performed. The most significant genes were included in a pathway analysis using the free DAVID software. C12orf74 (rs4315121, p = 9.85 × 10−05, OR = 8.84), LOC101930064 (rs4814890, p = 9.61 × 10−05, OR = 0.13), KBTBD12 (rs1549874, p = 8.27 × 10−05, OR = 0.08), PIWIL1 (rs11060842, p = 7.82 × 10−05, OR = 9.05) and C16orf82 (rs62030877, p = 8.92 × 10−05, OR = 0.14) showed a higher probability in the individual analysis. The analysis at the gene level highlighted PIWIL, MIR9-2, LHCGR, TPR and BCR. At the signaling pathway level, PI3K-Akt, long-term depression and FoxO achieved nominal significance (p = 1.3 × 10−02, p = 5.1 × 10−03, p = 1.2 × 10−02, respectively). In summary, various metabolic pathways are involved in the pathogenesis of periodontitis in DS, including PI3K-Akt, which regulates cell proliferation and inflammatory response.


2021 ◽  
Vol 10 (14) ◽  
pp. 3134
Author(s):  
Luisa Frizziero ◽  
Andrea Calciati ◽  
Giulia Midena ◽  
Tommaso Torresin ◽  
Raffaele Parrozzani ◽  
...  

Subthreshold micropulse laser treatment has become a recognized option in the therapeutic approach to diabetic macular edema. However, some yet undefined elements pertaining to its mechanism of action and most effective treatment method still limit its clinical diffusion. We reviewed the current literature on subthreshold micropulse laser treatment, particularly focusing on its effects on the modulation of retinal neuroinflammation. Subthreshold micropulse laser treatment seems to determine a long-term normalization of specific retinal neuroinflammatory metabolic pathways, contributing to the restoration of retinal homeostasis and the curtailing of local inflammatory processes. Optimized and standardized parameters ensure effective and safe treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amalia Piro ◽  
Letizia Bernardo ◽  
Ilia Anna Serra ◽  
Isabel Barrote ◽  
Irene Olivé ◽  
...  

AbstractSeagrass Cymodocea nodosa was sampled off the Vulcano island, in the vicinity of a submarine volcanic vent. Leaf samples were collected from plants growing in a naturally acidified site, influenced by the long-term exposure to high CO2 emissions, and compared with others collected in a nearby meadow living at normal pCO2 conditions. The differential accumulated proteins in leaves growing in the two contrasting pCO2 environments was investigated. Acidified leaf tissues had less total protein content and the semi-quantitative proteomic comparison revealed a strong general depletion of proteins belonging to the carbon metabolism and protein metabolism. A very large accumulation of proteins related to the cell respiration and to light harvesting process was found in acidified leaves in comparison with those growing in the normal pCO2 site. The metabolic pathways linked to cytoskeleton turnover also seemed affected by the acidified condition, since a strong reduction in the concentration of cytoskeleton structural proteins was found in comparison with the normal pCO2 leaves. Results coming from the comparative proteomics were validated by the histological and cytological measurements, suggesting that the long lasting exposure and acclimation of C. nodosa to the vents involved phenotypic adjustments that can offer physiological and structural tools to survive the suboptimal conditions at the vents vicinity.


1999 ◽  
Vol 575 ◽  
Author(s):  
H.-P. Brack ◽  
M. M. Koebel ◽  
A. Tsukada ◽  
J. Huslage ◽  
F. Buechi ◽  
...  

ABSTRACTWe have demonstrated earlier the useful performance of our PSI radiation-grafted membranes in terms of the current-voltage characteristics of 30 cm2 active area fuel cells containing these membranes and their long-term testing over 6,000 h at 60 °C. We report here on testing of PSI radiation-grafted membranes in these fuel cells at 80 °C and in short stacks comprised of two or four 100 cm2 active area cells. The in-situ degradation of membranes has been investigated by characterizing membranes both before testing in fuel cells and post-mortem after testing in fuel cells. Characterization was accomplished by means of ion-exchange capacity and infrared and Raman spectroscopic measurements. In addition, a rapid screening method for our ex-situ testing of the oxidative stability of proton-conducting membranes was developed in this work. Comparison of the initial screening test results concerning the oxidative stability of some perfluorinated, partially-fluorinated, and non-fluorinated membranes compare well qualitatively with the relative stability of these same membranes during their long-term testing in fuel cells.


Sign in / Sign up

Export Citation Format

Share Document