scholarly journals Large dependency of intracellular NAD and CoA pools on cultivation conditions in Saccharomyces cerevisiae

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kanhaiya Kumar ◽  
Per Bruheim

Abstract Objective The objective of this study was to investigate the variation of NAD and CoA metabolite pools in Saccharomyces cerevisiae cultivated under various cultivation conditions. This study complements a previous report on glycolytic, pentose phosphate pathway, tricarboxylic acid cycle, amino acids, and deoxy-/nucleoside phosphate pools determined under the same cultivation conditions. Results S. cerevisiae pellets from batch (four carbohydrate sources) and chemostat (carbon-, nitrogen-, phosphate—limited and a range of dilution rates) bioreactor cultivations were extracted and analyzed with two recently established absolute quantitative liquid chromatography mass spectrometry (LC–MS/MS) methods for NAD and CoA metabolites. Both methods apply 13C internal standard dilution strategy for the enhanced analytical accuracy and precision. Individual metabolite pools were relatively constant for the different growth rates within the same mode of cultivation, but large differences were observed among some of the modes, i.e. NAD metabolites were 10 to 100-fold lower in nitrogen limited chemostats compared to the other modes, and phosphate limited chemostats were characterized with much lower CoA metabolite pools. The results complement the previous results and together provide a comprehensive insight into primary metabolite pools variations at a large range in growth and carbon source consumption rates.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Kanhaiya Kumar ◽  
Vishwesh Venkatraman ◽  
Per Bruheim

Abstract Background Saccharomyces cerevisiae is a well-known popular model system for basic biological studies and serves as a host organism for the heterologous production of commercially interesting small molecules and proteins. The central metabolism is at the core to provide building blocks and energy to support growth and survival in normal situations as well as during exogenous stresses and forced heterologous protein production. Here, we present a comprehensive study of intracellular central metabolite pool profiling when growing S. cerevisiae on different carbon sources in batch cultivations and at different growth rates in nutrient-limited glucose chemostats. The latest versions of absolute quantitative mass spectrometry-based metabolite profiling methodology were applied to cover glycolytic and pentose phosphate pathway metabolites, tricarboxylic acid cycle (TCA), complete amino acid, and deoxy-/nucleoside phosphate pools. Results Glutamate, glutamine, alanine, and citrate were the four most abundant metabolites for most conditions tested. The amino acid is the dominant metabolite class even though a marked relative reduction compared to the other metabolite classes was observed for nitrogen and phosphate limited chemostats. Interestingly, glycolytic and pentose phosphate pathway (PPP) metabolites display the largest variation among the cultivation conditions while the nucleoside phosphate pools are more stable and vary within a closer concentration window. The overall trends for glucose and nitrogen-limited chemostats were increased metabolite pools with the increasing growth rate. Next, comparing the chosen chemostat reference growth rate (0.12 h−1, approximate one-fourth of maximal unlimited growth rate) illuminates an interesting pattern: almost all pools are lower in nitrogen and phosphate limited conditions compared to glucose limitation, except for the TCA metabolites citrate, isocitrate and α-ketoglutarate. Conclusions This study provides new knowledge-how the central metabolism is adapting to various cultivations conditions and growth rates which is essential for expanding our understanding of cellular metabolism and the development of improved phenotypes in metabolic engineering.


2004 ◽  
Vol 70 (11) ◽  
pp. 6816-6825 ◽  
Author(s):  
Yong-Su Jin ◽  
Jose M. Laplaza ◽  
Thomas W. Jeffries

ABSTRACT Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for d-xylose utilization through the heterologous expression of genes for aldose reductase (XYL1), xylitol dehydrogenase (XYL2), and d-xylulokinase (XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2, and XYL3, mRNA transcript levels for glycolytic, fermentative, and pentose phosphate enzymes did not change significantly on glucose or xylose under aeration or oxygen limitation. However, expression of genes encoding the tricarboxylic acid cycle, respiration enzymes (HXK1, ADH2, COX13, NDI1, and NDE1), and regulatory proteins (HAP4 and MTH1) increased significantly when cells were cultivated on xylose, and the genes for respiration were even more elevated under oxygen limitation. These results suggest that recombinant S. cerevisiae does not recognize xylose as a fermentable carbon source and that respiratory proteins are induced in response to cytosolic redox imbalance; however, lower sugar uptake and growth rates on xylose might also induce transcripts for respiration. A petite respiration-deficient mutant (ρ�) of the engineered strain produced more ethanol and accumulated less xylitol from xylose. It formed characteristic colonies on glucose, but it did not grow on xylose. These results are consistent with the higher respiratory activity of recombinant S. cerevisiae when growing on xylose and with its inability to grow on xylose under anaerobic conditions.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanan Shi ◽  
Jingjing Zhu ◽  
Yan Xu ◽  
Xiaozhao Tang ◽  
Zushun Yang ◽  
...  

Abstract Background Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. Results Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position − 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. Conclusions Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4484
Author(s):  
Nooruddin-bin Sadiq ◽  
Da-Hye Ryu ◽  
Jwa-Yeong Cho ◽  
A-Hyeon Lee ◽  
Dae-Geun Song ◽  
...  

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at −80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


2004 ◽  
Vol 24 (12) ◽  
pp. 5130-5143 ◽  
Author(s):  
Christine Soustelle ◽  
Laurence Vernis ◽  
Karine Fréon ◽  
Anne Reynaud-Angelin ◽  
Roland Chanet ◽  
...  

ABSTRACT The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.


1967 ◽  
Vol 105 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Kirsti Lampiaho ◽  
E. Kulonen

1. The metabolism of incubated slices of sponge-induced granulation tissue, harvested 4–90 days after the implantation, was studied with special reference to the capacity of collagen synthesis and to the energy metabolism. Data are also given on the nucleic acid contents during the observation period. Three metabolic phases were evident. 2. The viability of the slices for the synthesis of collagen was studied in various conditions. Freezing and homogenization destroyed the capacity of the tissue to incorporate proline into collagen. 3. Consumption of oxygen reached the maximum at 30–40 days. There was evidence that the pentose phosphate cycle was important, especially during the phases of the proliferation and the involution. The formation of lactic acid was maximal at about 20 days. 4. The capacity to incorporate proline into collagen hydroxyproline in vitro was limited to a relatively short period at 10–30 days. 5. The synthesis of collagen was dependent on the supply of oxygen and glucose, which latter could be replaced in the incubation medium by other monosaccharides but not by the metabolites of glucose or tricarboxylic acid-cycle intermediates.


1986 ◽  
Vol 6 (6) ◽  
pp. 1936-1942
Author(s):  
K S Kim ◽  
M S Rosenkrantz ◽  
L Guarente

The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Atsushi Yamashita ◽  
Yan Zhao ◽  
Yunosuke Matsuura ◽  
Kazuaki Yamasaki ◽  
Sayaka Moriguchi-Goto ◽  
...  

Aims: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. Methods: Macrophage-rich or smooth muscle cell (SMC)-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS) and interferon-γ (INFγ) were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using 18F-fluorodeoxyglucose (18F-FDG) and pimonidazole, a marker of hypoxia. Results: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20). The uptake of 18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p < 0.0001). Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8) and pentose phosphate pathway (4 of 6) metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely associated with metabolic pathways in the macrophages. Conclusion: Infiltrative macrophages in atherosclerotic arteries might affect metabolic systems, and hypoxia but not classical activation might augment glycolytic and pentose phosphate pathways in macrophages.


Author(s):  
Minhye Shin ◽  
Heeyoung Park ◽  
Sooah Kim ◽  
Eun Joong Oh ◽  
Deokyeol Jeong ◽  
...  

Being a microbial host for lignocellulosic biofuel production, Saccharomyces cerevisiae needs to be engineered to express a heterologous xylose pathway; however, it has been challenging to optimize the engineered strain for efficient and rapid fermentation of xylose. Deletion of PHO13 (Δpho13) has been reported to be a crucial genetic perturbation in improving xylose fermentation. A confirmed mechanism of the Δpho13 effect on xylose fermentation is that the Δpho13 transcriptionally activates the genes in the non-oxidative pentose phosphate pathway (PPP). In the current study, we found a couple of engineered strains, of which phenotypes were not affected by Δpho13 (Δpho13-negative), among many others we examined. Genome resequencing of the Δpho13-negative strains revealed that a loss-of-function mutation in GCR2 was responsible for the phenotype. Gcr2 is a global transcriptional factor involved in glucose metabolism. The results of RNA-seq confirmed that the deletion of GCR2 (Δgcr2) led to the upregulation of PPP genes as well as downregulation of glycolytic genes, and changes were more significant under xylose conditions than those under glucose conditions. Although there was no synergistic effect between Δpho13 and Δgcr2 in improving xylose fermentation, these results suggested that GCR2 is a novel knockout target in improving lignocellulosic ethanol production.


2018 ◽  
Vol 15 (2) ◽  
pp. 164-181 ◽  
Author(s):  
Roni Manyevitch ◽  
Matthew Protas ◽  
Sean Scarpiello ◽  
Marisa Deliso ◽  
Brittany Bass ◽  
...  

Background: Alzheimer's disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic dysfunction are increasingly implicated in AD. Objective: Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. Methods: Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, without date restrictions, for the keywords “AD”, “CSF”, and “human” plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration’s Review Manager software. Results: Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were included comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and metabolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01- 1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. Conclusion: This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given observed unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of further in silico evaluation and generation of novel hypotheses in the AD field.


Sign in / Sign up

Export Citation Format

Share Document