scholarly journals Evaluation of the association between exosomal levels and female reproductive system and fertility outcome during aging: a systematic review protocol

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Halimeh Mobarak ◽  
Reza Rahbarghazi ◽  
Francesca Lolicato ◽  
Mohammad Heidarpour ◽  
Fariba Pashazadeh ◽  
...  

Abstract Background Exosomes may have critical roles in the maternal-embryo cross-talk for the recognition and maintenance of pregnancy during maternal aging. Exosomes have the capability to carry developmental signaling molecules with the ability to modulate gene expressions and affect growth and regulation of embryo during pregnancy. Systematic review aims to evaluate age-related alterations in the exosomal content and functions that can influence the reproductive performance in human and animal models as conveyors of senescence signals. Methods A literature search of electronic databases including MEDLINE (PubMed), Embase, ProQuest, Scopus, Google Scholar, WHO, SID, MAGIRAN, and Barakat will be conducted. Following the online search, articles will be screened by two independent reviewers according to inclusion and exclusion criteria. Eligible studies will be critically appraised by reviewers at the study level for methodological quality using Joanna Briggs Institute’s standardized critical appraisal tools. The extracted data from selected studies will cover the study populations, methods, current evidence about the physiological role of extracellular vesicles and exosomes in reproductive system, relevant outcomes, and possible conclusions about the effectiveness of exposure. Discussion Regarding the role of exosomes and their cargoes in the function of reproductive tract, the possible beneficial or adverse effects following exosomal administration from younger women to older women will be evaluated in the systematic review. As a result, exosome therapy could be suggested as a novel therapeutic agent if the favorable results are identified.

2017 ◽  
Vol 131 (24) ◽  
pp. 2865-2883 ◽  
Author(s):  
Lawson Ung ◽  
Ushasree Pattamatta ◽  
Nicole Carnt ◽  
Jennifer L. Wilkinson-Berka ◽  
Gerald Liew ◽  
...  

For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.


2020 ◽  
Vol 17 ◽  
Author(s):  
Christina Karakosta ◽  
Argyrios Tzamalis ◽  
Michalis Aivaliotis ◽  
Ioannis Tsinopoulos

Background/Objective:: The aim of this systematic review is to identify all the available data on human lens proteomics with a critical role to age-related cataract formation in order to elucidate the physiopathology of the aging lens. Materials and Methods:: We searched on Medline and Cochrane databases. The search generated 328 manuscripts. We included nine original proteomic studies that investigated human cataractous lenses. Results:: Deamidation was the major age-related post-translational modification. There was a significant increase in the amount of αA-crystallin D-isoAsp58 present at all ages, while an increase in the extent of Trp oxidation was apparent in cataract lenses when compared to aged normal lenses. During aging, enzymes with oxidized cysteine at critical sites included GAPDH, glutathione synthase, aldehyde dehydrogenase, sorbitol dehydrogenase, and PARK7. Conclusion:: D-isoAsp in αA crystallin could be associated with the development of age-related cataract in human, by contributing to the denaturation of a crystallin, and decreasing its ability to act as a chaperone. Oxidation of Trp may be associated with nuclear cataract formation in human, while the role of oxidant stress in age-related cataract formation is dominant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


Author(s):  
Elham Monaghesh ◽  
Alireza Hajizadeh

Abstract Purpose The outbreak of coronavirus disease-19 (COVID-19) is a public health emergency of international concern. Telehealth is effective option to fight COVID-19 outbreak. The aim of this systematic review was to identify the role of telehealth services during COVID-19 outbreak.Methods This systematic review was conducted through searching five databases including PubMed, Scopus, Embase, Web of Science and Science direct. Inclusion criteria included studies clearly defined role of telehealth services in COVID-19 outbreak, published from December 31, 2019, written in English language and published in peer reviewed. Two reviewers independently assessed search results, extracted data, and assessed quality of included studies. Quality assessment was based on the Critical Appraisal Skills Program (CASP) checklist. Narrative synthesis was undertaken to summarize and report the findings.Results Eight studies met the inclusion out of the 142 search results. Currently, healthcare providers and patients who are self-isolating, telehealth is certainly appropriate to minimizing the risk of COVID-19 transmission. This solution has the potential to avoidance of direct physical contact, provide continuous care to the community and finally reduce morbidity and mortality in COVID-19 outbreak.Conclusions The use of telehealth improves the provision of health services. Therefore, telehealth should be an important tool in caring services while keeping patients and health providers safe as the COVID-19 outbreak.


2021 ◽  
Vol 10 (19) ◽  
pp. 4462
Author(s):  
Konstantinos G. Kyriakoulis ◽  
Anastasios Kollias ◽  
Garyphallia Poulakou ◽  
Ioannis G. Kyriakoulis ◽  
Ioannis P. Trontzas ◽  
...  

The role of immunomodulatory agents in the treatment of hospitalized patients with COVID-19 has been of increasing interest. Anakinra, an interleukin-1 inhibitor, has been shown to offer significant clinical benefits in patients with COVID-19 and hyperinflammation. An updated systematic review and meta-analysis regarding the impact of anakinra on the outcomes of hospitalized patients with COVID-19 was conducted. Studies, randomized or non-randomized with adjustment for confounders, reporting on the adjusted risk of death in patients treated with anakinra versus those not treated with anakinra were deemed eligible. A search was performed in PubMed/EMBASE databases, as well as in relevant websites, until 1 August 2021. The meta-analysis of six studies that fulfilled the inclusion criteria (n = 1553 patients with moderate to severe pneumonia, weighted age 64 years, men 66%, treated with anakinra 50%, intubated 3%) showed a pooled hazard ratio for death in patients treated with anakinra at 0.47 (95% confidence intervals 0.34, 0.65). A meta-regression analysis did not reveal any significant associations between the mean age, percentage of males, mean baseline C-reactive protein levels, mean time of administration since symptoms onset among the included studies and the hazard ratios for death. All studies were considered as low risk of bias. The current evidence, although derived mainly from observational studies, supports a beneficial role of anakinra in the treatment of selected patients with COVID-19.


2019 ◽  
Vol 20 (14) ◽  
pp. 3596 ◽  
Author(s):  
Yuki Tochigi ◽  
Yutaka Takamatsu ◽  
Jun Nakane ◽  
Rika Nakai ◽  
Kentaro Katayama ◽  
...  

WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.


2018 ◽  
Vol 71 (5) ◽  
pp. 624-636 ◽  
Author(s):  
Vasileios Theocharidis ◽  
Ioannis Katsaros ◽  
Emmanouil Sgouromallis ◽  
Nikolaos Serifis ◽  
Vasileios Boikou ◽  
...  

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jo Wrigglesworth ◽  
Phillip Ward ◽  
Ian H. Harding ◽  
Dinuli Nilaweera ◽  
Zimu Wu ◽  
...  

Abstract Background Brain age is a biomarker that predicts chronological age using neuroimaging features. Deviations of this predicted age from chronological age is considered a sign of age-related brain changes, or commonly referred to as brain ageing. The aim of this systematic review is to identify and synthesize the evidence for an association between lifestyle, health factors and diseases in adult populations, with brain ageing. Methods This systematic review was undertaken in accordance with the PRISMA guidelines. A systematic search of Embase and Medline was conducted to identify relevant articles using search terms relating to the prediction of age from neuroimaging data or brain ageing. The tables of two recent review papers on brain ageing were also examined to identify additional articles. Studies were limited to adult humans (aged 18 years and above), from clinical or general populations. Exposures and study design of all types were also considered eligible. Results A systematic search identified 52 studies, which examined brain ageing in clinical and community dwelling adults (mean age between 21 to 78 years, ~ 37% were female). Most research came from studies of individuals diagnosed with schizophrenia or Alzheimer’s disease, or healthy populations that were assessed cognitively. From these studies, psychiatric and neurologic diseases were most commonly associated with accelerated brain ageing, though not all studies drew the same conclusions. Evidence for all other exposures is nascent, and relatively inconsistent. Heterogenous methodologies, or methods of outcome ascertainment, were partly accountable. Conclusion This systematic review summarised the current evidence for an association between genetic, lifestyle, health, or diseases and brain ageing. Overall there is good evidence to suggest schizophrenia and Alzheimer’s disease are associated with accelerated brain ageing. Evidence for all other exposures was mixed or limited. This was mostly due to a lack of independent replication, and inconsistency across studies that were primarily cross sectional in nature. Future research efforts should focus on replicating current findings, using prospective datasets. Trial registration A copy of the review protocol can be accessed through PROSPERO, registration number CRD42020142817.


2021 ◽  
Vol 55 (2) ◽  
pp. 193-205

Yes-associated protein (YAP) is one of the Hippo pathway's two effectors, a pathway associated with organ size control. Research on YAP has focused on its oncogenic potential. However, in cancer cells, aside from inducing growth, YAP was also found to regulate glucose metabolism. Therefore, we aimed to explore YAP's control of glucose metabolism and whether these findings are translatable to physiological conditions. We conducted a systematic review of the MEDLINE database through PubMed in April 2020 and repeated the search in September 2020. We found that YAP induced the transcriptional activity of most genes associated with glucose metabolism from enzymes to transport proteins. In glycolysis and gluconeogenesis, YAP upregulated all enzymes except for enolase and pyruvate kinase. Multiple research has also shown YAP's ability to regulate the expression of glucose transporter of the GLUT family. Additionally, glucose concentration, hypoxia, and hormones such as insulin and glucagon regulate YAP activity and depend on YAP to exert their biological activity. In this review, we have shown that YAP is a central regulator of glucose metabolism, controlling both enzymes and proteins involved in glucose transport. YAP is also situated strategically in several pathways controlling glucose and was found to mediate their effects. If these results were consistent in physiological conditions and across glucose-associated metabolic disturbances, then YAP may become a prospective therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document