scholarly journals Dietary calcium phosphate strongly impacts gut microbiome changes elicited by inulin and galacto-oligosaccharides consumption

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jori Fuhren ◽  
Markus Schwalbe ◽  
Jos Boekhorst ◽  
Christiane Rösch ◽  
Henk A. Schols ◽  
...  

Abstract Background Fructo-oligosaccharides (FOS), inulin, and galacto-oligosaccharides (GOS) are widely recognized prebiotics that profoundly affect the intestinal microbiota, including stimulation of bifidobacteria and lactobacilli, and are reported to elicit several health benefits. The combination of dietary FOS and inulin with calcium phosphate was reported to stimulate commensal Lactobacillus populations and protect the host against pathogenic Enterobacteriaceae, but little is known about the effects of GOS in diets with a different level of calcium phosphate. Methods We investigated the microbiome changes elicited by dietary supplementation with GOS or inulin using diets with high (100 mmol/kg) and low (30 mmol/kg) calcium phosphate levels in adult Wistar rats. Rats were acclimatized to the respective experimental diets for 14 days, after which fecal material was collected, DNA was extracted from fecal material, and the V3‑V4 region of the bacterial 16S rRNA gene was amplified with PCR, followed by microbial composition analysis. In tandem, the organic acid profiles of the fecal material were analyzed. Results Feeding rats non-supplemented (no prebiotic-added) diets revealed that diets rich in calcium phosphate favored members of the Firmicutes and increased fecal lactic, succinic, acetic, propionic, and butyric acid levels. In contrast, relatively low dietary calcium phosphate levels promoted the abundance of mucin degrading genera like Akkermansia and Bacteroides, and resulted in increased fecal propionic acid levels and modest increases in lactic and butyric acid levels. Irrespective of the calcium phosphate levels, supplementation with GOS or inulin strongly stimulated Bifidobacterium, while only high calcium phosphate diets increased the endogenous Faecalibaculum populations. Conclusions Despite the prebiotic’s substantial difference in chemical structure, sugar composition, oligomer size, and the microbial degradation pathway involved in their utilization, inulin and GOS modulated the gut microbiota very similarly, in a manner that strongly depended on the dietary calcium phosphate level. Therefore, our study implies that the collection of detailed diet information including micronutrient balance is necessary to correctly assess diet-driven microbiota analysis.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 559
Author(s):  
Shohei Akagawa ◽  
Yuko Akagawa ◽  
Yoko Nakai ◽  
Mitsuru Yamagishi ◽  
Sohsaku Yamanouchi ◽  
...  

Butyric acid produced in the intestine by butyric acid-producing bacteria (BAPB) is known to suppress excessive inflammatory response and may prevent chronic disease development. We evaluated whether fiber-rich barley intake increases BAPB in the gut and concomitantly butyric acid in feces. Eighteen healthy adults received granola containing functional barley (BARLEYmax®) once daily for four weeks. Fecal DNA before intake, after intake, and one month after intake was analyzed using 16S rRNA gene sequencing to assess microbial diversity, microbial composition at the order level, and the proportion of BAPB. Fecal butyric acid concentration was also measured. There were no significant differences in diversities and microbial composition between samples. The proportion of BAPB increased significantly after the intake (from 5.9% to 8.2%). However, one month after stopping the intake, the proportion of BAPB returned to the original value (5.4%). Fecal butyric acid concentration increased significantly from 0.99 mg/g feces before intake to 1.43 mg/g after intake (p = 0.028), which decreased significantly to 0.87 mg/g after stopping intake (p = 0.008). As BAPB produce butyric acid by degrading dietary fiber, functional barley may act as a prebiotic, increasing BAPB and consequently butyric acid in the intestine.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255323
Author(s):  
Na Fei ◽  
Candice Choo-Kang ◽  
Sirimon Reutrakul ◽  
Stephanie J. Crowley ◽  
Dale Rae ◽  
...  

Sleep disorders are increasingly being characterized in modern society as contributing to a host of serious medical problems, including obesity and metabolic syndrome. Changes to the microbial community in the human gut have been reportedly associated with many of these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on the gut microbiota in a large cohort of 655 participants of African descent, aged 25–45, from Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was self-reported via a questionnaire. Participants were classified into 3 sleep groups: short (<7hrs), normal (7-<9hrs), and long (≥9hrs). Forty-seven percent of US participants were classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial composition analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity negatively correlated with sleep length (p<0.05). Furthermore, sleep length significantly contributed to the inter-individual beta diversity dissimilarity in gut microbial composition (p<0.01). Participants with both short and long-sleep durations exhibited significantly higher abundances of several taxonomic features, compared to normal sleep duration participants. The predicted relative proportion of two genes involved in the butyrate synthesis via lysine pathway were enriched in short sleep duration participants. Finally, co-occurrence relationships revealed by network analysis showed unique interactions among the short, normal and long duration sleepers. These results suggest that sleep length in humans may alter gut microbiota by driving population shifts of the whole microbiota and also specific changes in Exact Sequence Variants abundance, which may have implications for chronic inflammation associated diseases. The current findings suggest a possible relationship between disrupted sleep patterns and the composition of the gut microbiota. Prospective investigations in larger and more prolonged sleep researches and causally experimental studies are needed to confirm these findings, investigate the underlying mechanism and determine whether improving microbial homeostasis may buffer against sleep-related health decline in humans.


1985 ◽  
Vol 42 (1) ◽  
pp. 181-184 ◽  
Author(s):  
Ronald W. Hardy ◽  
Karl D. Shearer

Groups of rainbow trout (Salmo gairdneri) were fed casein–gelatin diets supplemented with calcium phosphate (Ca3(PO4)2) to produce dietary calcium and phosphorus levels of 1,2, or 4% and 0.9,1.5, or 2.4%, respectively (low, medium, or high calcium phosphate), and supplemented with 20 μg Zn/g diet as ZnSO4, zinc proteinate, or ZnSO4 + EDTA (1000 μg/g). Dietary calcium phosphate levels had no significant effect on weight gain of the fish, although the fish fed the high dietary calcium phosphate level were smaller than the rest. Dietary zinc supplementation had no effect on growth, but significantly increased whole body zinc levels in fish fed diets containing low or medium calcium phosphate. In fish fed diets containing low calcium phosphate, the zinc supplements all increased whole body zinc concentrations. In fish fed diets containing medium calcium phosphate, supplementation with zinc proteinate resulted in higher whole body zinc values than supplementation with other zinc sources. Dietary zinc supplementation did not increase whole body zinc concentrations above control levels in fish fed the experimental diets containing high calcium phosphate. We conclude that increased dietary levels of calcium phosphate reduced whole body zinc concentration of rainbow trout and that 20 μg Zn/g diet was insufficient to overcome this reduction at the highest dietary calcium phosphate level regardless of the form of zinc supplement used.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katherine A. Partrick ◽  
Anna M. Rosenhauer ◽  
Jérémie Auger ◽  
Amanda R. Arnold ◽  
Nicole M. Ronczkowski ◽  
...  

AbstractSocial stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two different doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-inflammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, significantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-inflammatory profile but that these changes may not promote reductions in behavioral responses to social stress.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M. Helgen ◽  
Raphael Eisenhofer

Abstract Background Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results Using qPCR of the 16S rRNA gene we detected a microbial community in the SHNW pouch. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean ASV richness 19 ± 8) compared to reproductively inactive females (mean ASV richness 941 ± 393) and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7–90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions This study represents the first contamination-controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results indicate that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kundi Yang ◽  
Mengyang Xu ◽  
Jingyi Cao ◽  
Qi Zhu ◽  
Monica Rahman ◽  
...  

AbstractEmerging evidence has highlighted the connection between exposure to air pollution and the increased risk of obesity, metabolic syndrome, and comorbidities. Given the recent interest in studying the effects of ultrafine particle (UFP) on the health of obese individuals, this study examined the effects of gastrointestinal UFP exposure on gut microbial composition and metabolic function using an in vivo murine model of obesity in both sexes. UFPs generated from light-duty diesel engine combustion of petrodiesel (B0) and a petrodiesel/biodiesel fuel blend (80:20 v/v, B20) were administered orally. Multi-omics approaches, including liquid chromatography–mass spectrometry (LC–MS) based targeted metabolomics and 16S rRNA gene sequence analysis, semi-quantitatively compared the effects of 10-day UFP exposures on obese C57B6 mouse gut microbial population, changes in diversity and community function compared to a phosphate buffer solution (PBS) control group. Our results show that sex-specific differences in the gut microbial population in response to UFP exposure can be observed, as UFPs appear to have a differential impact on several bacterial families in males and females. Meanwhile, the alteration of seventy-five metabolites from the gut microbial metabolome varied significantly (ANOVA p < 0.05) across the PBS control, B0, and B20 groups. Multivariate analyses revealed that the fuel-type specific disruption to the microbial metabolome was observed in both sexes, with stronger disruptive effects found in females in comparison to male obese mice. Metabolic signatures of bacterial cellular oxidative stress, such as the decreased concentration of nucleotides and lipids and increased concentrations of carbohydrate, energy, and vitamin metabolites were detected. Furthermore, blood metabolites from the obese mice were differentially affected by the fuel types used to generate the UFPs (B0 vs. B20).


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 472
Author(s):  
Yeong-Ji Oh ◽  
Ye-Rin Park ◽  
Jungil Hong ◽  
Do-Yup Lee

The light-emitting diode (LED) has been widely used in the food industry, and its application has been focused on microbial sterilization, specifically using blue-LED. The investigation has been recently extended to characterize the biotic and abiotic (photodynamic) effects of different wavelengths. Here, we investigated LED effects on kimchi fermentation. Kimchi broths were treated with three different colored-LEDs (red, green, and blue) or kept in the dark as a control. Multiomics was applied to evaluate the microbial taxonomic composition using 16S rRNA gene amplicon sequencing, and the metabolomic profiles were determined using liquid chromatography–Orbitrap mass spectrometry. Cell viability was tested to determine the potential cytotoxicity of the LED-treated kimchi broths. First, the amplicon sequencing data showed substantial changes in taxonomic composition at the family and genus levels according to incubation (initial condition vs. all other groups). The differences among the treated groups (red-LED (RLED), green-LED (GLED), blue-LED (BLED), and dark condition) were marginal. The relative abundance of Weissella was decreased in all treated groups compared to that of the initial condition, which coincided with the decreased composition of Lactobacillus. Compositional changes were relatively high in the GLED group. Subsequent metabolomic analysis indicated a unique metabolic phenotype instigated by different LED treatments, which led to the identification of the LED treatment-specific and common compounds (e.g., luteolin, 6-methylquinoline, 2-hydroxycinnamic acid, and 9-HODE). These results indicate that different LED wavelengths induce characteristic alterations in the microbial composition and metabolomic content, which may have applications in food processing and storage with the aim of improving nutritional quality and the safety of food.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shenzheng Zeng ◽  
Sukontorn Khoruamkid ◽  
Warinphorn Kongpakdee ◽  
Dongdong Wei ◽  
Lingfei Yu ◽  
...  

Abstract The Pacific white shrimp, with the largest production in shrimp industry, has suffered from multiple severe viral and bacterial diseases, which calls for a more reliable and environmentally friendly system to promote shrimp culture. The “Aquamimicry system”, mimicking the nature of aquatic ecosystems for the well-being of aquatic animals, has effectively increased shrimp production and been adapted in many countries. However, the microbial communities in the shrimp intestine and surrounding environment that act as an essential component in Aquamimicry remain largely unknown. In this study, the microbial composition and diversity alteration in shrimp intestine, surrounding water and sediment at different culture stages were investigated by high throughput sequencing of 16S rRNA gene, obtaining 13,562 operational taxonomic units (OTUs). Results showed that the microbial communities in shrimp intestine and surrounding environment were significantly distinct from each other, and 23 distinguished taxa for each habitat were further characterized. The microbial communities differed significantly at different culture stages, confirmed by a great number of OTUs dramatically altered during the culture period. A small part of these altered OTUs were shared between shrimp intestine and surrounding environment, suggesting that the microbial alteration of intestine was not consistent with that of water and sediment. Regarding the high production of Aquamimicry farm used as a case in this study, the dissimilarity between intestinal and surrounding microbiota might be considered as a potential indicator for healthy status of shrimp farming, which provided hints on the appropriate culture practices to improve shrimp production.


2021 ◽  
Vol 9 (2) ◽  
pp. 278
Author(s):  
Shen Jean Lim ◽  
Miriam Aguilar-Lopez ◽  
Christine Wetzel ◽  
Samia V. O. Dutra ◽  
Vanessa Bray ◽  
...  

The preterm infant gut microbiota is influenced by environmental, endogenous, maternal, and genetic factors. Although siblings share similar gut microbial composition, it is not known how genetic relatedness affects alpha diversity and specific taxa abundances in preterm infants. We analyzed the 16S rRNA gene content of stool samples, ≤ and >3 weeks postnatal age, and clinical data from preterm multiplets and singletons at two Neonatal Intensive Care Units (NICUs), Tampa General Hospital (TGH; FL, USA) and Carle Hospital (IL, USA). Weeks on bovine milk-based fortifier (BMF) and weight gain velocity were significant predictors of alpha diversity. Alpha diversity between siblings were significantly correlated, particularly at ≤3 weeks postnatal age and in the TGH NICU, after controlling for clinical factors. Siblings shared higher gut microbial composition similarity compared to unrelated individuals. After residualizing against clinical covariates, 30 common operational taxonomic units were correlated between siblings across time points. These belonged to the bacterial classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and Negativicutes. Besides the influence of BMF and weight variables on the gut microbial diversity, our study identified gut microbial similarities between siblings that suggest genetic or shared maternal and environmental effects on the preterm infant gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document