scholarly journals Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jongoh Shin ◽  
Jung-Ran Noh ◽  
Donghui Choe ◽  
Namil Lee ◽  
Yoseb Song ◽  
...  

Abstract Background The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging. Results Here, we report the changes in gut microbial communities and their functions in mouse models during ageing and three rejuvenation procedures including co-housing, serum-injection and parabiosis. Our results showed that the compositional structure and gene abundance of the intestinal microbiota changed dynamically during the ageing process. Through the three rejuvenation procedures, we observed that the microbial community and intestinal immunity of aged mice were comparable to those of young mice. The results of metagenomic data analysis underscore the importance of the high abundance of Akkermansia and the butyrate biosynthesis pathway in the rejuvenated mouse group. Furthermore, oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span, as evidenced by the frailty index and restoration of muscle atrophy. Conclusions In conclusion, the changes in key microbial communities and their functions during ageing and three rejuvenation procedures, and the increase in the healthy lifespan of aged mice by oral administration of Akkermansia. Our results provide a rationale for developing therapeutic strategies to achieve healthy active ageing.

2020 ◽  
Vol 21 (10) ◽  
pp. 3631 ◽  
Author(s):  
Raffaella Boggia ◽  
Federica Turrini ◽  
Alessandra Roggeri ◽  
Guendalina Olivero ◽  
Francesca Cisani ◽  
...  

The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in “ex-vivo, in vitro” parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.


2016 ◽  
Author(s):  
Melissa N. Conley ◽  
Carmen P. Wong ◽  
Kyle M. Duyck ◽  
Norman Hord ◽  
Emily Ho ◽  
...  

Introduction Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging”. While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of the study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age, and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 also stratify individuals by age. Discussion Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age, relative abundance of specific taxa in the gut microbiome, and serum MCP-1 status in mice indicates that the gut microbiome may play a modulating role in age-related inflammatory processes. These findings warrant further investigation of taxa associated with the inflammaging phenotype and the role of gut microbiome in the health status and immune function of aged individuals.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bo Ren ◽  
Luanfeng Wang ◽  
Aiziguli Mulati ◽  
Yan Liu ◽  
Zhigang Liu ◽  
...  

Age-related gut barrier dysfunction and dysbiosis of the gut microbiome play crucial roles in human aging. Dietary methionine restriction (MR) has been reported to extend lifespan and reduce the inflammatory response; however, its protective effects on age-related gut barrier dysfunction remain unclear. Accordingly, we focus on the effects of MR on inflammation and gut function. We found a 3-month methionine-restriction reduced inflammatory factors in the serum of aged mice. Moreover, MR reduced gut permeability in aged mice and increased the levels of the tight junction proteins mRNAs, including those of occludin, claudin-1, and zona occludens-1. MR significantly reduced bacterial endotoxin lipopolysaccharide concentration in aged mice serum. By using 16s rRNA sequencing to analyze microbiome diurnal rhythmicity during 24 h, we found MR moderately recovered the cyclical fluctuations of the gut microbiome which was disrupted in aged mice, leading to time-specific enhancement of the abundance of short-chain fatty acid-producing and lifespan-promoting microbes. Moreover, MR dampened the oscillation of inflammation-related TM7-3 and Staphylococcaceae. In conclusion, the effects of MR on the gut barrier were likely related to alleviation of the oscillations of inflammation-related microbes. MR can enable nutritional intervention against age-related gut barrier dysfunction.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1854 ◽  
Author(s):  
Melissa N. Conley ◽  
Carmen P. Wong ◽  
Kyle M. Duyck ◽  
Norman Hord ◽  
Emily Ho ◽  
...  

Introduction.Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging.” While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model.Results.We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age.Discussion.Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age, relative abundance of specific taxa in the gut microbiome, and serum MCP-1 status in mice indicates that the gut microbiome may play a modulating role in age-related inflammatory processes. These findings warrant further investigation of taxa associated with the inflammaging phenotype and the role of gut microbiome in the health status and immune function of aged individuals.


2016 ◽  
Author(s):  
Melissa N. Conley ◽  
Carmen P. Wong ◽  
Kyle M. Duyck ◽  
Norman Hord ◽  
Emily Ho ◽  
...  

Introduction Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging”. While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of the study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age, and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 also stratify individuals by age. Discussion Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age, relative abundance of specific taxa in the gut microbiome, and serum MCP-1 status in mice indicates that the gut microbiome may play a modulating role in age-related inflammatory processes. These findings warrant further investigation of taxa associated with the inflammaging phenotype and the role of gut microbiome in the health status and immune function of aged individuals.


2017 ◽  
Author(s):  
Thomas Sharpton ◽  
Svetlana Lyalina ◽  
Julie Luong ◽  
Joey Pham ◽  
Emily M. Deal ◽  
...  

AbstractThe gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regards to function. To investigate microbiome mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where dampened TGF-β signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including dampened acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, lipooligosaccharide transporter abundance diverges prior to immune activation, indicating that it could be a pre-disease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundance of particular taxa, including several species ofBacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering potential mechanisms through which the gut microbiome becomes altered in IBD.ImportanceIBD patients harbor distinct microbial communities with different functional capabilities compared to healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading up to disease onset. By performing weekly metagenomic sequencing and mixed effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study is novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development.


2020 ◽  
Vol 75 (11) ◽  
pp. 2081-2088
Author(s):  
Dongtao Wang ◽  
Yajun Yang ◽  
Xiaohu Zou ◽  
Jing Zhang ◽  
Zena Zheng ◽  
...  

Abstract Skeletal muscle atrophy in the aged causes loss in muscle mass and functions. Naturally occurring antioxidant flavonoid apigenin is able to ameliorate obesity- and denervation-induced muscle atrophies, but its effects on age-related muscle atrophy remain unknown. We hypothesized that apigenin can relieve muscle atrophy in aged mice, probably through special effects on reactive oxygen species and enzymes with antioxidant functions. For the male mice of the study, apigenin showed significant dose-dependent effects in relieving aging-related muscle atrophy according to results of frailty index as indicator of frailty associated with aging, grip strength, and running distance. Apigenin also improved myofiber size and morphological features and increased mitochondria number and volume, as manifested by succinate dehydrogenase staining and transmission electron microscopy. Our tests also suggested that apigenin promoted activities of enzymes such as superoxide dismutase and glutathione peroxidase for antioxidation and those for aerobic respiration such as mitochondrial respiratory enzyme complexes I, II, and IV, increased ATP, and enhanced expression of genes such as peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, nuclear respiratory factor-1, and ATP5B involved in mitochondrial biogenesis. The data also suggested that apigenin inhibited Bcl-2/adenovirus E1B 19kD-interacting protein 3 and DNA fragmentation as indicators of mitophagy and apoptosis in aged mice with skeletal muscle atrophy. Together, the results suggest that apigenin relieves age-related skeletal muscle atrophy through reducing oxidative stress and inhibiting hyperactive autophagy and apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazutoshi Yoshitake ◽  
Gaku Kimura ◽  
Tomoko Sakami ◽  
Tsuyoshi Watanabe ◽  
Yukiko Taniuchi ◽  
...  

AbstractAlthough numerous metagenome, amplicon sequencing-based studies have been conducted to date to characterize marine microbial communities, relatively few have employed full metagenome shotgun sequencing to obtain a broader picture of the functional features of these marine microbial communities. Moreover, most of these studies only performed sporadic sampling, which is insufficient to understand an ecosystem comprehensively. In this study, we regularly conducted seawater sampling along the northeastern Pacific coast of Japan between March 2012 and May 2016. We collected 213 seawater samples and prepared size-based fractions to generate 454 subsets of samples for shotgun metagenome sequencing and analysis. We also determined the sequences of 16S rRNA (n = 111) and 18S rRNA (n = 47) gene amplicons from smaller sample subsets. We thereafter developed the Ocean Monitoring Database for time-series metagenomic data (http://marine-meta.healthscience.sci.waseda.ac.jp/omd/), which provides a three-dimensional bird’s-eye view of the data. This database includes results of digital DNA chip analysis, a novel method for estimating ocean characteristics such as water temperature from metagenomic data. Furthermore, we developed a novel classification method that includes more information about viruses than that acquired using BLAST. We further report the discovery of a large number of previously overlooked (TAG)n repeat sequences in the genomes of marine microbes. We predict that the availability of this time-series database will lead to major discoveries in marine microbiome research.


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098794
Author(s):  
Imran Mukhtar ◽  
Haseeb Anwar ◽  
Osman Asghar Mirza ◽  
Qasim Ali ◽  
Muhammad Umar Ijaz ◽  
...  

In the contemporary research world, the intestinal microbiome is now envisioned as a new body organ. Recently, the gut microbiome represents a new drug target in the gut, since various orthologues of intestinal drug transporters are also found present in the microbiome that lines the small intestine of the host. Owing to this, absorbance of sulpiride by the gut microbiome in an in vivo albino rats model was assessed after the oral administration with a single dose of 20mg/kg b.w. The rats were subsequently sacrificed at 2, 3, 4, 5 and 6 hours post oral administration to collect the gut microbial mass pellet. The drug absorbance by the gut microbiome was determined by pursuing the microbial lysate through RP-HPLC-UV. Total absorbance of sulpiride by the whole gut microbiome and drug absorbance per milligram of microbial pellet were found significantly higher at 4 hours post-administration as compared to all other groups. These results affirm the hypothesis that the structural homology between membrane transporters of the gut microbiome and intestinal epithelium of the host might play an important role in drug absorbance by gut microbes in an in vivo condition.


2021 ◽  
Vol 50 (Supplement_1) ◽  
pp. i12-i42
Author(s):  
M B Zazzara ◽  
P M Wells ◽  
R C E Bowyer ◽  
M N Lochlainn ◽  
E J Thompson ◽  
...  

Abstract Introduction Periodontitis is a chronic inflammatory disease affecting the periodontium, ultimately leading to looseness and/or loss of teeth. Sarcopenia refers to age-related reduction in muscle mass and strength. Similar to periodontitis, chronic low-grade inflammation is thought to play a key role in its development. In addition, both increase in prevalence with advancing age. Despite known associations with other diseases involving a dysregulated inflammatory response, for example rheumatoid arthritis,, the relationship between periodontitis and sarcopenia, and whether they could be driven by similar processes, remains uncertain. The aim of this study was to explore the association between periodontitis and sarcopenia. Methods Observational study of 2040 adult volunteers [age 67.18 (12.17)] enrolled in the TwinsUK cohort study. Presence of tooth mobility and number of teeth lost were used to assess periodontal health. A binary variable was created to define periodontitis. Measurements of muscle strength, muscle quality/quantity and physical performance were used to assess sarcopenia. A categorical variable was created according to the European Working Group on Sarcopenia in Older People (EWGSOP2) consensus, to define sarcopenia (1: probable; 2: positive; 3: severe). Generalised linear mixed model analysis used on complete cases and age-matched (n = 1,288) samples to ascertain associations between periodontitis and sarcopenia. Results No significant association was found between periodontitis and sarcopenia in both the complete cases analysis and age-matched analysis. Results were consistent when analysis was adjusted for potential confounders including body mass index, frailty index, Mini Mental State Examination smoking, nutritional status and educational level. Conclusions This study found no significant association between periodontitis and sarcopenia in a cohort of 2040 adults. Although both periodontitis and sarcopenia have been linked to a dysregulated immune response and demonstrate an increase in prevalence with increasing age, our work is inconclusive due to the plethora of possible aetiopathogenetic pathways.


Sign in / Sign up

Export Citation Format

Share Document