scholarly journals A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Maria-Theodora Pandi ◽  
Maria Koromina ◽  
Iordanis Tsafaridis ◽  
Sotirios Patsilinakos ◽  
Evangelos Christoforou ◽  
...  

Abstract Background The field of pharmacogenomics focuses on the way a person’s genome affects his or her response to a certain dose of a specified medication. The main aim is to utilize this information to guide and personalize the treatment in a way that maximizes the clinical benefits and minimizes the risks for the patients, thus fulfilling the promises of personalized medicine. Technological advances in genome sequencing, combined with the development of improved computational methods for the efficient analysis of the huge amount of generated data, have allowed the fast and inexpensive sequencing of a patient’s genome, hence rendering its incorporation into clinical routine practice a realistic possibility. Methods This study exploited thoroughly characterized in functional level SNVs within genes involved in drug metabolism and transport, to train a classifier that would categorize novel variants according to their expected effect on protein functionality. This categorization is based on the available in silico prediction and/or conservation scores, which are selected with the use of recursive feature elimination process. Toward this end, information regarding 190 pharmacovariants was leveraged, alongside with 4 machine learning algorithms, namely AdaBoost, XGBoost, multinomial logistic regression, and random forest, of which the performance was assessed through 5-fold cross validation. Results All models achieved similar performance toward making informed conclusions, with RF model achieving the highest accuracy (85%, 95% CI: 0.79, 0.90), as well as improved overall performance (precision 85%, sensitivity 84%, specificity 94%) and being used for subsequent analyses. When applied on real world WGS data, the selected RF model identified 2 missense variants, expected to lead to decreased function proteins and 1 to increased. As expected, a greater number of variants were highlighted when the approach was used on NGS data derived from targeted resequencing of coding regions. Specifically, 71 variants (out of 156 with sufficient annotation information) were classified as to “Decreased function,” 41 variants as “No” function proteins, and 1 variant in “Increased function.” Conclusion Overall, the proposed RF-based classification model holds promise to lead to an extremely useful variant prioritization and act as a scoring tool with interesting clinical applications in the fields of pharmacogenomics and personalized medicine.

2021 ◽  
Author(s):  
Maria-Theodora Pandi ◽  
Maria Koromina ◽  
Iordanis Tsafaridis ◽  
Sotirios Patsilinakos ◽  
Evangelos Christoforou ◽  
...  

Abstract Background: The field of pharmacogenomics focuses on the way a person’s genome affects his or her response to a certain dose of a specified medication. The main aim is to utilize this information to guide and personalize the treatment in a way that maximizes the clinical benefits and minimizes the risks for the patients, thus fulfilling the promises of personalized medicine. Technological advances in genome sequencing, combined with the development of improved computational methods for the efficient analysis of the huge amount of generated data, have allowed the fast and inexpensive sequencing of a patient’s genome, hence rendering its incorporation into clinical routine practice a realistic possibility. Results: The potential availability of a vast number of identified genetic variants in a clinical setting highlights the necessity of developing a method to evaluate and prioritize this information towards its exploitation in guiding medication or dosing scheme systematically and effectively. In this direction, the present study examines the development of a computational model that can classify new variants according to their possible effects on protein function, which in turn affects drug response, by using as a training set a dataset of functionally validated single nucleotide variants (SNVs) located in pharmacogenes. Conclusion: Overall, the proposed model holds promise to lead to an extremely useful variant prioritization and scoring tool with interesting clinical applications in pharmacogenomics.


2021 ◽  
Vol 22 (5) ◽  
pp. 2704
Author(s):  
Andi Nur Nilamyani ◽  
Firda Nurul Auliah ◽  
Mohammad Ali Moni ◽  
Watshara Shoombuatong ◽  
Md Mehedi Hasan ◽  
...  

Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.


2019 ◽  
Vol 9 (6) ◽  
pp. 1154 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Bohan Yoon ◽  
Jongtae Rhee

Radio frequency identification (RFID) is an automated identification technology that can be utilized to monitor product movements within a supply chain in real-time. However, one problem that occurs during RFID data capturing is false positives (i.e., tags that are accidentally detected by the reader but not of interest to the business process). This paper investigates using machine learning algorithms to filter false positives. Raw RFID data were collected based on various tagged product movements, and statistical features were extracted from the received signal strength derived from the raw RFID data. Abnormal RFID data or outliers may arise in real cases. Therefore, we utilized outlier detection models to remove outlier data. The experiment results showed that machine learning-based models successfully classified RFID readings with high accuracy, and integrating outlier detection with machine learning models improved classification accuracy. We demonstrated the proposed classification model could be applied to real-time monitoring, ensuring false positives were filtered and hence not stored in the database. The proposed model is expected to improve warehouse management systems by monitoring delivered products to other supply chain partners.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi Guo ◽  
Yushan Liu ◽  
Wenjie Ming ◽  
Zhongjin Wang ◽  
Junming Zhu ◽  
...  

Purpose: We are aiming to build a supervised machine learning-based classifier, in order to preoperatively distinguish focal cortical dysplasia (FCD) from glioneuronal tumors (GNTs) in patients with epilepsy.Methods: This retrospective study was comprised of 96 patients who underwent epilepsy surgery, with the final neuropathologic diagnosis of either an FCD or GNTs. Seven classical machine learning algorithms (i.e., Random Forest, SVM, Decision Tree, Logistic Regression, XGBoost, LightGBM, and CatBoost) were employed and trained by our dataset to get the classification model. Ten features [i.e., Gender, Past history, Age at seizure onset, Course of disease, Seizure type, Seizure frequency, Scalp EEG biomarkers, MRI features, Lesion location, Number of antiepileptic drug (AEDs)] were analyzed in our study.Results: We enrolled 56 patients with FCD and 40 patients with GNTs, which included 29 with gangliogliomas (GGs) and 11 with dysembryoplasic neuroepithelial tumors (DNTs). Our study demonstrated that the Random Forest-based machine learning model offered the best predictive performance on distinguishing the diagnosis of FCD from GNTs, with an F1-score of 0.9180 and AUC value of 0.9340. Furthermore, the most discriminative factor between FCD and GNTs was the feature “age at seizure onset” with the Chi-square value of 1,213.0, suggesting that patients who had a younger age at seizure onset were more likely to be diagnosed as FCD.Conclusion: The Random Forest-based machine learning classifier can accurately differentiate FCD from GNTs in patients with epilepsy before surgery. This might lead to improved clinician confidence in appropriate surgical planning and treatment outcomes.


2011 ◽  
Vol 230-232 ◽  
pp. 625-628
Author(s):  
Lei Shi ◽  
Xin Ming Ma ◽  
Xiao Hong Hu

E-bussiness has grown rapidly in the last decade and massive amount of data on customer purchases, browsing pattern and preferences has been generated. Classification of electronic data plays a pivotal role to mine the valuable information and thus has become one of the most important applications of E-bussiness. Support Vector Machines are popular and powerful machine learning techniques, and they offer state-of-the-art performance. Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information and one of its important applications is feature selection. In this paper, rough set theory and support vector machines are combined to construct a classification model to classify the data of E-bussiness effectively.


2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


2021 ◽  
Vol 3 (4) ◽  
pp. 32-37
Author(s):  
J. Adassuriya ◽  
J. A. N. S. S. Jayasinghe ◽  
K. P. S. C. Jayaratne

Machine learning algorithms play an impressive role in modern technology and address automation problems in many fields as these techniques can be used to identify features with high sensitivity, which humans or other programming techniques aren’t capable of detecting. In addition, the growth of the availability of the data demands the need of faster, accurate, and more reliable automating methods of extracting information, reforming, and preprocessing, and analyzing them in the world of science. The development of machine learning techniques to automate complex manual programs is a time relevant research in astrophysics as it’s a field where, experts are dealing with large sets of data every day. In this study, an automated classification was built for 6 types of star classes Beta Cephei, Delta Scuti, Gamma Doradus, Red Giants, RR Lyrae and RV Tarui with widely varying properties, features extracted from training dataset of stellar light curves obtained from Kepler mission. The Random Forest classification model was used as the Machine Learning model and both periodic and non-periodic features extracted from light curves were used as the inputs to the model. Our implementation achieved an accuracy of 86.5%, an average precision level of 0.86, an average recall value of 0.87, and average F1-Score of 0.86 for the testing dataset obtained from the Kepler mission.


2021 ◽  
Author(s):  
Isaac Shiri ◽  
Yazdan Salimi ◽  
Abdollah Saberi ◽  
Masoumeh Pakbin ◽  
Ghasem Hajianfar ◽  
...  

AbstractPurposeTo derive and validate an effective radiomics-based model for differentiation of COVID-19 pneumonia from other lung diseases using a very large cohort of patients.MethodsWe collected 19 private and 5 public datasets, accumulating to 26,307 individual patient images (15,148 COVID-19; 9,657 with other lung diseases e.g. non-COVID-19 pneumonia, lung cancer, pulmonary embolism; 1502 normal cases). Images were automatically segmented using a validated deep learning (DL) model and the results carefully reviewed. Images were first cropped into lung-only region boxes, then resized to 296×216 voxels. Voxel dimensions was resized to 1×1×1mm3 followed by 64-bin discretization. The 108 extracted features included shape, first-order histogram and texture features. Univariate analysis was first performed using simple logistic regression. The thresholds were fixed in the training set and then evaluation performed on the test set. False discovery rate (FDR) correction was applied to the p-values. Z-Score normalization was applied to all features. For multivariate analysis, features with high correlation (R2>0.99) were eliminated first using Pearson correlation. We tested 96 different machine learning strategies through cross-combining 4 feature selectors or 8 dimensionality reduction techniques with 8 classifiers. We trained and evaluated our models using 3 different datasets: 1) the entire dataset (26,307 patients: 15,148 COVID-19; 11,159 non-COVID-19); 2) excluding normal patients in non-COVID-19, and including only RT-PCR positive COVID-19 cases in the COVID-19 class (20,697 patients including 12,419 COVID-19, and 8,278 non-COVID-19)); 3) including only non-COVID-19 pneumonia patients and a random sample of COVID-19 patients (5,582 patients: 3,000 COVID-19, and 2,582 non-COVID-19) to provide balanced classes. Subsequently, each of these 3 datasets were randomly split into 70% and 30% for training and testing, respectively. All various steps, including feature preprocessing, feature selection, and classification, were performed separately in each dataset. Classification algorithms were optimized during training using grid search algorithms. The best models were chosen by a one-standard-deviation rule in 10-fold cross-validation and then were evaluated on the test sets.ResultsIn dataset #1, Relief feature selection and RF classifier combination resulted in the highest performance (Area under the receiver operating characteristic curve (AUC) = 0.99, sensitivity = 0.98, specificity = 0.94, accuracy = 0.96, positive predictive value (PPV) = 0.96, and negative predicted value (NPV) = 0.96). In dataset #2, Recursive Feature Elimination (RFE) feature selection and Random Forest (RF) classifier combination resulted in the highest performance (AUC = 0.99, sensitivity = 0.98, specificity = 0.95, accuracy = 0.97, PPV = 0.96, and NPV = 0.98). In dataset #3, the ANOVA feature selection and RF classifier combination resulted in the highest performance (AUC = 0.98, sensitivity = 0.96, specificity = 0.93, accuracy = 0.94, PPV = 0.93, NPV = 0.96).ConclusionRadiomic features extracted from entire lung combined with machine learning algorithms can enable very effective, routine diagnosis of COVID-19 pneumonia from CT images without the use of any other diagnostic test.


Images are the fastest growing content, they contribute significantly to the amount of data generated on the internet every day. Image classification is a challenging problem that social media companies work on vigorously to enhance the user’s experience with the interface. The recent advances in the field of machine learning and computer vision enables personalized suggestions and automatic tagging of images. Convolutional neural network is a hot research topic these days in the field of machine learning. With the help of immensely dense labelled data available on the internet the networks can be trained to recognize the differentiating features among images under the same label. New neural network algorithms are developed frequently that outperform the state-of-art machine learning algorithms. Recent algorithms have managed to produce error rates as low as 3.1%. In this paper the architecture of important CNN algorithms that have gained attention are discussed, analyzed and compared and the concept of transfer learning is used to classify different breeds of dogs..


2020 ◽  
Author(s):  
Robert Chew ◽  
Caroline Kery ◽  
Laura Baum ◽  
Thomas Bukowski ◽  
Annice Kim ◽  
...  

BACKGROUND Social media are important for monitoring perceptions of public health issues and for educating target audiences about health; however, limited information about the demographics of social media users makes it challenging to identify conversations among target audiences and limits how well social media can be used for public health surveillance and education outreach efforts. Certain social media platforms provide demographic information on followers of a user account, if given, but they are not always disclosed, and researchers have developed machine learning algorithms to predict social media users’ demographic characteristics, mainly for Twitter. To date, there has been limited research on predicting the demographic characteristics of Reddit users. OBJECTIVE We aimed to develop a machine learning algorithm that predicts the age segment of Reddit users, as either adolescents or adults, based on publicly available data. METHODS This study was conducted between January and September 2020 using publicly available Reddit posts as input data. We manually labeled Reddit users’ age by identifying and reviewing public posts in which Reddit users self-reported their age. We then collected sample posts, comments, and metadata for the labeled user accounts and created variables to capture linguistic patterns, posting behavior, and account details that would distinguish the adolescent age group (aged 13 to 20 years) from the adult age group (aged 21 to 54 years). We split the data into training (n=1660) and test sets (n=415) and performed 5-fold cross validation on the training set to select hyperparameters and perform feature selection. We ran multiple classification algorithms and tested the performance of the models (precision, recall, F1 score) in predicting the age segments of the users in the labeled data. To evaluate associations between each feature and the outcome, we calculated means and confidence intervals and compared the two age groups, with 2-sample t tests, for each transformed model feature. RESULTS The gradient boosted trees classifier performed the best, with an F1 score of 0.78. The test set precision and recall scores were 0.79 and 0.89, respectively, for the adolescent group (n=254) and 0.78 and 0.63, respectively, for the adult group (n=161). The most important feature in the model was the number of sentences per comment (permutation score: mean 0.100, SD 0.004). Members of the adolescent age group tended to have created accounts more recently, have higher proportions of submissions and comments in the r/teenagers subreddit, and post more in subreddits with higher subscriber counts than those in the adult group. CONCLUSIONS We created a Reddit age prediction algorithm with competitive accuracy using publicly available data, suggesting machine learning methods can help public health agencies identify age-related target audiences on Reddit. Our results also suggest that there are characteristics of Reddit users’ posting behavior, linguistic patterns, and account features that distinguish adolescents from adults.


Sign in / Sign up

Export Citation Format

Share Document