scholarly journals Safety assessment of bio-synthesized iodine-doped silver nanoparticle wound ointment in experimental rats

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oluwatosin Kudirat Shittu ◽  
Olawale Issac Oluyomi ◽  
Theresa Yebo Gara

Abstract Background In the wake of antibiotic resistance, treatment of intractable wound have been very challenging and any alternative treatment which may lead to less use of antibiotics deserves further exploitation. Nanoparticle conjugates has potentially not only reduce antibiotic use but it has been considered safe and effectively disinfect wounds already colonized with resistant bacteria as well as promoting granulation tissue formation. In this study, Iodine-doped silver nanoparticle Ointment (Ag-I NPs) was investigated for its toxicological effect on excisional wound of albino rats. Methods Aqueous extraction of Piper guineense leaf was carried out and used for the synthesis of Ag-I NPs. The synthesized Ag-I NPs were characterized by Ultraviolet visible spectrophotometer which confirmed the availability of silver nanoparticles. The particles were then used to prepare a wound healing ointment for treating excision wound inflicted on wistar rat model. Blood samples, liver and kidney biopsies were collected on the 21st day of the experiment from all the rats for hematology, biochemical and histopathological analysis. Result In the hematological and biochemical analysis, hemoglobin (Hb), packed cell volume (PCV) and mean corpuscular hemoglobin (MCH), superoxide dismutase (SOD), alkaline phosphatase (ALP) of experimental rats treated with Ag-I NPs were significantly different (p < 0.05) compared to the untreated group. In the histopathology, the photomicrograph of the liver showed the normal control, PEG, Ag-NP, and Ag-I NP groups remained intact displaying distinctive histo-morphological appearance and stable cell density while the untreated (UTD) group showed fatty liver and reduced cellular density. The kidney photomicrograph of the normal control and Ag- I NP groups were present with intact renal corpuscles while the other photomicrographs displayed corpuscular degeneration marked by the large halo-spaced bowman space. Conclusion Silver nanoparticles (Ag NPs) and iodine-doped silver nanoparticle (Ag-I NP) altered haematological parameters in the rats and also influenced some biochemical changes in the serum of the rats. While in the histopathological study, the antioxidant present in the plant extract used to synthesize Ag NPs and Ag I-NPs may have functioned in synergy to maintain and preserve the integrity of the hepatocytes and renal corpuscles of the rats.

2020 ◽  
Vol 38 (1B) ◽  
pp. 1-5
Author(s):  
Ruqayah A. Salman ◽  
Abdulrahman K. Ali ◽  
Amenah Ali Salman

The study aims to investigate the effects of silver nanoparticles (Ag NPs) on the seminiferous tubules in Albino rats. Several in vitro studies have been performed in different cell models, using various nanoparticles. Pure and spherical AgNPs with an average size of 30 nm, was injected into two groups of male albino rats (6 rats for each group) in different doses. Histopathological changes in testis tissues were showed a harmful effect of the silver nanoparticles, manifested by reducing the number of spermatogenic cells, and a decrease in the number of leyidg´s cells (group 1), and hypotrophy in seminiferous and enlargement in interstitial spaces in group 2.


Author(s):  
Bheemshetty S. Patil ◽  
Pallavi S. Kanthe ◽  
Chandramouli R. Reddy ◽  
Kusal K. Das

Background: Dietary high fat possibly causes oxidative stress. Also, it alters the pathophysiology of metabolically active myocardial tissues and vascular architecture. Emblica officinalis contains a potential antioxidant that counteracts oxidative stress and possibly maintains vascular integrity. Objective: To assess the effect of ethanolic extract of Emblica officinalis (EEO) on High Fat Diet (HFD) induced changes in vascular chemistry and histopathology of the cardiovascular system in male albino rats. Materials and Methods: Ethanolic extract of Emblica Officinalis (EEO) was prepared and phytochemical analysis was done. Rats were divided into four groups, having six rats in each group as follows: group 1- Control (20% fat); group 2 (20% fat+ EEO 100 mg/kg/b w); group 3 (30% fat) and group 4 (30% fat + EEO 100 mg/kg/b w). Dietary and EEO supplementation was continued for 21 days. Gravimetric and oxidative stress markers like MDA, NO, antioxidants like Vitamin C and E, and molecular marker (NOS3) were evaluated. Histopathological analysis was done on the myocardium and elastic artery along with measurement of coronary arterial wall thickness and lumen diameter. One way ANOVA was done for analysis of data. Results: High fat diet showed a significant increase in MDA, decrease of NO with unaltered NOS3 protein in rats fed with high fat diet, which indicate possible alteration of vascular pathophysiology. Supplementation of EEO showed an ameliorating effect on high fat diet induced oxidative stress. These results were further corroborated with findings of a histopathological study on the myocardium, elastic artery and coronary arterial architecture. Conclusion: Ethanolic extract of Emblica officinalis (EEO) indicates its cardioprotective efficacy against rats fed with high fat diet.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ragaa A. Hamouda ◽  
Mervat H. Hussein ◽  
Rasha A. Abo-elmagd ◽  
Salwa S. Bawazir

Abstract Using aqueous cyanobacterial extracts in the synthesis of silver nanoparticle is looked as green, ecofriendly, low priced biotechnology that gives advancement over both chemical and physical methods. In the current study, an aqueous extract of Oscillatoria limnetica fresh biomass was used for the green synthesis of Ag-NPs, since O. limnetica extract plays a dual part in both reducing and stabilizing Oscillatoria-silver nanoparticles (O-AgNPs). The UV-Visible absorption spectrum, Fourier transforms infrared (FT-IR), transmission electron microscopy (TEM) and scanning electron microscope (SEM) were achieved for confirming and characterizing the biosynthesized O-AgNPs. TEM images detected the quasi-spherical Ag-NPs shape with diverse size ranged within 3.30–17.97 nm. FT-IR analysis demonstrated the presence of free amino groups in addition to sulfur containing amino acid derivatives acting as stabilizing agents as well as the presence of either sulfur or phosphorus functional groups which possibly attaches silver. In this study, synthesized Ag-NPs exhibited strong antibacterial activity against multidrug-resistant bacteria (Escherichia coli and Bacillus cereus) as well as cytotoxic effects against both human breast (MCF-7) cell line giving IC50 (6.147 µg/ml) and human colon cancer (HCT-116) cell line giving IC50 (5.369 µg/ml). Hemolytic activity of Ag-NPs was investigated and confirmed as being non- toxic to human RBCs in low concentrations.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Melisa A. Quinteros ◽  
Ivana M. Aiassa Martínez ◽  
Pablo R. Dalmasso ◽  
Paulina L. Páez

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using aPseudomonas aeruginosastrain from a reference culture collection. A greenish culture supernatant ofP. aeruginosaincubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely,Staphylococcus aureus,Staphylococcus epidermidis,Enterococcus faecalis,Proteus mirabilis,Acinetobacter baumannii,Escherichia coli,P. aeruginosa, andKlebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistantS. aureus,A. baumannii, andE. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host.


2015 ◽  
Vol 17 (33) ◽  
pp. 21243-21253 ◽  
Author(s):  
Fwu-Long Mi ◽  
Shao-Jung Wu ◽  
Wen-Qi Zhong ◽  
Cheng-Yu Huang

A dual-functional sensor based on silver nanoparticles was synthesized by a two-stage procedure consisting of a low-temperature chitosan–Ag+ complexation followed by a high-temperature reduction of the complex to form chitosan-capped silver nanoparticles (CS-capped Ag NPs).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Anes Al-Sharqi ◽  
Kasing Apun ◽  
Micky Vincent ◽  
Devagi Kanakaraju ◽  
Lesley Maurice Bilung

Silver nanoparticles (Ag-NPs) possess excellent antibacterial properties and are considered to be an alternative material for treating antibiotic-resistant bacteria. The present study was aimed at enhancing the antibacterial efficiency of Ag-NPs using visible laser light against Escherichia coli and Staphylococcus aureus in vitro. Four concentrations of Ag-NPs (12.5, 25, 50, and 100 μg/ml), synthesized by the chemical reduction method, were utilized to conduct the antibacterial activity of prepared Ag-NPs. The antibacterial efficiencies of photoactivated Ag-NPs against both bacteria were determined by survival assay after exposure to laser irradiation. The mechanism of interactions between Ag-NPs and the bacterial cell membranes was then evaluated via scanning electron microscopy (SEM) and reactive oxygen species analysis to study the cytotoxic action of photoactivated Ag-NPs against both bacterial species. Results showed that the laser-activated Ag-NP treatment reduced the surviving population to 14% of the control in the E. coli population, while the survival in the S. aureus population was reduced to 28% of the control upon 10 min exposure time at the concentration of 50 μg/ml. However, S. aureus showed lower sensitivity after photoactivation compared to E. coli. Moreover, the effects depended on the concentration of Ag-NPs and exposure time to laser light. SEM images of treated bacterial cells indicated that substantial morphological changes occurred in cell membranes after treatment. The results suggested that Ag-NPs in the presence of visible light exhibit strong antibacterial activity which could be used to inactivate harmful and pathogenic microorganisms.


2021 ◽  
Vol 1 (1) ◽  
pp. 014-022
Author(s):  
Omodamiro O.D. ◽  
Alaebo P.O. ◽  
Olukotun B.G. ◽  
Chikezie P.C.

Gongronema latifolium is highly medicinal in nature. The fundamental ingredients used for medicinal purposes are stored in the various parts of the plant such as the fruits, seeds, leaves, root and stem. This present study is aimed to evaluate the hepatotoxicity effect of methanolic leaf extract of Gongronema latifolium on albino rats. This study was divided into five groups normal control groups: received commercial rat feed and water, group 2: received 1000 mg/kg b.w. of leaf extract of Gongronema latifolium, group 3: received 500 mg/kg b.w of leaf extract of G. latifolium, group 4; received 250 mg/kg of leaf extract of Gongronema latifolium, and group 5: received 125mg/kg of leaf extract of Gongronema latifolium. The result shows a significant (p<0.05) increase in serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and conjugate bilirubin when compared to the normal control not giving the extract. Administration graded dosage of 1000mg/kg and 500mg/kg body weight significantly (p<0.05) increased the liver damage marker enzymes when compared with groups that received low dosage of 250mg/kg and 125mg/kg body weight and the normal control groups. The histopathological study revealed severe portal inflammation without steatosis and moderate portal inflammation in groups that received 1000mg/kg and 500mg/kg. Therefore, these results suggested that methanol leaf extracts of Gongronema latifolium possess hepatotoxic properties and strict caution must be observed when using the plant extract as a natural remedy of any disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vikram Pareek ◽  
Stéphanie Devineau ◽  
Sathesh K. Sivasankaran ◽  
Arpit Bhargava ◽  
Jitendra Panwar ◽  
...  

Infections associated with antimicrobial-resistant bacteria now represent a significant threat to human health using conventional therapy, necessitating the development of alternate and more effective antibacterial compounds. Silver nanoparticles (Ag NPs) have been proposed as potential antimicrobial agents to combat infections. A complete understanding of their antimicrobial activity is required before these molecules can be used in therapy. Lysozyme coated Ag NPs were synthesized and characterized by TEM-EDS, XRD, UV-vis, FTIR spectroscopy, zeta potential, and oxidative potential assay. Biochemical assays and deep level transcriptional analysis using RNA sequencing were used to decipher how Ag NPs exert their antibacterial action against multi-drug resistant Klebsiella pneumoniae MGH78578. RNAseq data revealed that Ag NPs induced a triclosan-like bactericidal mechanism responsible for the inhibition of the type II fatty acid biosynthesis. Additionally, released Ag+ generated oxidative stress both extra- and intracellularly in K. pneumoniae. The data showed that triclosan-like activity and oxidative stress cumulatively underpinned the antibacterial activity of Ag NPs. This result was confirmed by the analysis of the bactericidal effect of Ag NPs against the isogenic K. pneumoniae MGH78578 ΔsoxS mutant, which exhibits a compromised oxidative stress response compared to the wild type. Silver nanoparticles induce a triclosan-like antibacterial action mechanism in multi-drug resistant K. pneumoniae. This study extends our understanding of anti-Klebsiella mechanisms associated with exposure to Ag NPs. This allowed us to model how bacteria might develop resistance against silver nanoparticles, should the latter be used in therapy.


2019 ◽  
Vol 70 (3) ◽  
pp. 1647
Author(s):  
A. KAZEMNIA ◽  
M. AHMADI ◽  
K. MARDANI ◽  
M. MORADI ◽  
R. DARVISHZADEH

Silver nanoparticles (Ag-NPs) can attach to flexible polymeric chains of antibiotics, hence it can be used in combination with antibiotics against resistant bacteria. In this study, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of Ag-NPs and antibiotics (gentamicin, tetracycline, erythromycin, ciprofloxacin, nalidixic acid, cefixime, cephalexin, amoxicillin, ampicillin, and penicillin) were quantified against 50 Escherichia coli isolates (25 human urinary tract infection and 25 avian colibacillosis). All isolates had been assigned as four phylogenetic groups A, B1, B2, and D. The results showed that the majority of the human and broiler isolates belonged to phylogenetic groups A and B2. MBC/MIC ratio of Ag-NPs in combination with antibiotics was assessed. It was found that the MIC of the majority of broiler isolates to Ag-NPs was equal to or greater than 50 μg/ml. To conclude, a combination of penicillin and ciprofloxacin with Ag-NPs exhibited profound impact against isolates, the combinations might be applicable for treating multidrug-resistant bacteria.


RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42670-42681 ◽  
Author(s):  
Usha Mandi ◽  
Anupam Singha Roy ◽  
Biplab Banerjee ◽  
Sk. Manirul Islam

Highly dispersed silver nanoparticles (Ag NPs) have been embedded into a mesoporous organic polymer (mPANI) and the material showed high catalytic activity in the acylation of amines and alcohols using acetic acid.


Sign in / Sign up

Export Citation Format

Share Document