Nonstationary blind deconvolution of seismic records

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. V1-V9 ◽  
Author(s):  
Hojjat Haghshenas Lari ◽  
Ali Gholami

Seismic deconvolution used for improving the bandwidth of data is inherently nonstationary, mixed phase, and blind. Due to some restricting assumptions imposed by conventional deconvolution methods, they are either stationary or semiblind. A fully nonstationary blind deconvolution method is proposed that is able to simultaneously take into account different sources of nonstationarity and to improve the bandwidth of highly nonstationary seismic data in a fully blind manner. Based on the concept of block convolution and the overlap method, the convolutional model of seismic data is generalized to consider nonstationary cases and to model nonstationary data. This generalized convolutional model is then used for nonstationary blind deconvolution, in which the statistical characteristics of the wavelets are allowed to arbitrarily change in the vertical and horizontal directions. Given a nonstationary seismic record, several time-space-varying wavelets are simultaneously determined with the reflectivity model in an alternating direction algorithm using a variational approach. Numerical tests are presented showing the high performance of our nonstationary blind deconvolution for improving the temporal resolution of data in comparison with their stationary counterparts. The results indicate that in comparison with patched deconvolution, our nonstationary method is more robust and stable for different window sizes and it produces better results with a higher signal-to-noise ratio.

2019 ◽  
Vol 16 (4) ◽  
pp. 801-810
Author(s):  
Yue Li ◽  
Wei Yu ◽  
Chao Zhang ◽  
Baojun Yang

Abstract The importance of seismic exploration has been recognized by geophysicists. At present, low-frequency noise usually exists in seismic exploration, especially in desert seismic records. This low-frequency noise shares the same frequency band with effective signals. This leads to the limitation or failure of traditional methods. In order to overcome the shortcomings of traditional denoising methods, we propose a novel desert seismic data denoising method based on a Wide Inference Network (WIN). The WIN aims to minimize the error between the prediction and target by residual learning during training, and it can obtain a set of optimal parameters, such as weights and biases. In this article, we construct a high-quality training set for a desert seismic record and this ensures the effective training of a WIN. In this way, each layer of the trained WIN can automatically extract a set of time–space characteristics without manual adjustment. These characteristics are transmitted layer by layer. Finally, they are utilized to extract effective signals. To verify the effectiveness of the WIN, we apply it to synthetic and real desert seismic records, respectively. In addition, we compare WIN with f – x deconvolution, variational mode decomposition (VMD) and shearlet transform. The results show that WIN has the best denoising performance in suppressing low-frequency noise and preserving effective signals.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1310-1314 ◽  
Author(s):  
Qing Li ◽  
Kris Vasudevan ◽  
Frederick A. Cook

Coherency filtering is a tool used commonly in 2-D seismic processing to isolate desired events from noisy data. It assumes that phase‐coherent signal can be separated from background incoherent noise on the basis of coherency estimates, and coherent noise from coherent signal on the basis of different dips. It is achieved by searching for the maximum coherence direction for each data point of a seismic event and enhancing the event along this direction through stacking; it suppresses the incoherent events along other directions. Foundations for a 2-D coherency filtering algorithm were laid out by several researchers (Neidell and Taner, 1971; McMechan, 1983; Leven and Roy‐Chowdhury, 1984; Kong et al., 1985; Milkereit and Spencer, 1989). Milkereit and Spencer (1989) have applied 2-D coherency filtering successfully to 2-D deep crustal seismic data for the improvement of visualization and interpretation. Work on random noise attenuation using frequency‐space or time‐space prediction filters both in two or three dimensions to increase the signal‐to‐noise ratio of the data can be found in geophysical literature (Canales, 1984; Hornbostel, 1991; Abma and Claerbout, 1995).


Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Yangkang Chen ◽  
Sergey Fomel ◽  
Hang Wang ◽  
shaohuan zu

The prediction error filter (PEF) assumes that the seismic data can be destructed to zero by applying a convolutional operation between the target data and prediction filter in either time-space or frequency-space domain. Here, we extend the commonly known PEF in 2D or 3D problems to its 5D version. To handle the non-stationary property of the seismic data, we formulate the PEF in a non-stationary way, which is called the non-stationary prediction error filter (NPEF). In the NPEF, the coefficients of a fixed-size PEF vary across the whole seismic data. In NPEF, we aim at solving a highly ill-posed inverse problem via the computationally efficient iterative shaping regularization. The NPEF can be used to denoise multi-dimensional seismic data, and more importantly, to restore the highly incomplete aliased 5D seismic data. We compare the proposed NPEF method with the state-of-the-art rank-reduction method for the 5D seismic data interpolation in cases of irregularly and regularly missing traces via several synthetic and real seismic data. Results show that although the proposed NPEF method is less effective than the rank-reduction method in interpolating irregularly missing traces especially in the case of low signal to noise ratio (S/N), it outperforms the rank-reduction method in interpolating aliased 5D dataset with regularly missing traces.


2020 ◽  
Vol 221 (2) ◽  
pp. 1211-1225 ◽  
Author(s):  
Y X Zhao ◽  
Y Li ◽  
B J Yang

SUMMARY One of the difficulties in desert seismic data processing is the large spectral overlap between noise and reflected signals. Existing denoising algorithms usually have a negative impact on the resolution and fidelity of seismic data when denoising, which is not conducive to the acquisition of underground structures and lithology related information. Aiming at this problem, we combine traditional method with deep learning, and propose a new feature extraction and denoising strategy based on a convolutional neural network, namely VMDCNN. In addition, we also build a training set using field seismic data and synthetic seismic data to optimize network parameters. The processing results of synthetic seismic records and field seismic records show that the proposed method can effectively suppress the noise that shares the same frequency band with the reflected signals, and the reflected signals have almost no energy loss. The processing results meet the requirements of high signal-to-noise ratio, high resolution and high fidelity for seismic data processing.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3700
Author(s):  
Jiachun You ◽  
Sha Song ◽  
Umberta Tinivella ◽  
Michela Giustiniani ◽  
Iván Vargas-Cordero

Natural gas hydrate is an important energy source. Therefore, it is extremely important to provide a clear imaging profile to determine its distribution for energy exploration. In view of the problems existing in conventional migration methods, e.g., the limited imaging angles, we proposed to utilize an amplitude-preserved one-way wave equation migration based on matrix decomposition to deal with primary and multiple waves. With respect to seismic data gathered at the Chilean continental margin, a conventional processing flow to obtain seismic records with a high signal-to-noise ratio is introduced. Then, the imaging results of the conventional and amplitude-preserved one-way wave equation migration methods based on primary waves are compared, to demonstrate the necessity of implementing amplitude-preserving migration. Moreover, a simple two-layer model is imaged by using primary and multiple waves, which proves the superiority of multiple waves in imaging compared with primary waves and lays the foundation for further application. For the real data, the imaging sections of primary and multiple waves are compared. We found that multiple waves are able to provide a wider imaging illumination while primary waves fail to illuminate, especially for the imaging of bottom simulating reflections (BSRs), because multiple waves have a longer travelling path and carry more information. By imaging the actual seismic data, we can make a conclusion that the imaging result generated by multiple waves can be viewed as a supplementary for the imaging result of primary waves, and it has some guiding values for further hydrate and in general shallow gas exploration.


Geophysics ◽  
2021 ◽  
pp. 1-35
Author(s):  
Hojjat Haghshenas Lari ◽  
Ali Gholami

Different versions of the Radon transform (RT) are widely used in seismic data processing tofocus the recorded seismic events. Multiple separation, data interpolation, and noise attenuationare some of RT applications in seismic processing work-flows. Unfortunately, the conventional RTmethods cannot focus the events perfectly in the RT domain. This problem arises due to theblurring effects of the source wavelet and the nonstationary nature of the seismic data. Sometimes,the distortion results in a big difference between the original data and its inverse transform. Wepropose a nonstationary deconvolutive RT to handle these two issues. Our proposed algorithm takesadvantage of a nonstationary convolution technique. that builds on the concept of block convolutionand the overlap method, where the convolution operation is defined separately for overlapping blocks.Therefore, it allows the Radon basis function to take arbitrary shapes in time and space directions. Inaddition, we introduce a nonstationary wavelet estimation method to determine time-space-varyingwavelets. The wavelets and the Radon panel are estimated simultaneously and in an alternative way.Numerical examples demonstrate that our nonstationary deconvolutive RT method can significantlyimprove the sparsity of Radon panels. Hence, the inverse RT does not suffer from the distortioncaused by the unfocused seismic events.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3014
Author(s):  
Weijun Cheng ◽  
Xiaoting Wang ◽  
Tengfei Ma ◽  
Gang Wang

In some emerging wireless applications, such as wearable communication and low-power sensor network applications, wireless devices or nodes not only require simple physical implementation approaches but also require certain reliable receiver techniques to overcome the effects of multipath or shadowed fading. Switched diversity combining (SDC) systems could be a simple and promising solution to the above requirements. Recently, a Fisher–Snedecor ℱ composited fading model has gained much interest because of its modeling accuracy and calculation tractability. However, the performance of SDC systems over ℱ fading channels has not yet been analyzed in the open literature. To this end, this paper presents a systematic analysis of SDC systems over ℱ fading channels, including dual-branch switch-and-stay combining (SSC), multibranch switch-and examine combining (SEC), and SEC with post-examining selection (SECps) systems. We first investigate the statistical characteristics of univariate and bivariate ℱ distributions. Then, these statistical expressions are introduced into the above SDC systems and the statistical metrics of the output signal-to-noise ratio (SNR) for these systems are deduced in different ℱ fading scenarios. Thirdly, certain exact and novel expressions of performance criteria, such as the outage probability, the average bit error probability and average symbol error probability, as well as the average channel capacity for SSC, SEC, and SECps are derived. To find the optimum performance, optimal analysis is performed for the independent and identically distributed cases. Finally, numerical evaluation and simulations are carried out to demonstrate the validity of the theoretical analysis under various ℱ fading scenarios. According to the obtained results, the multipath fading parameter has more influence on the performance of SDC systems than the shadowing parameter, the correlation coefficient, or the average SNR. Importantly, the SDC systems can provide switched diversity gains only when the switching threshold is not too large or too small compared to the average SNR.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


2021 ◽  
Vol 11 (4) ◽  
pp. 1591
Author(s):  
Ruixia Liu ◽  
Minglei Shu ◽  
Changfang Chen

The electrocardiogram (ECG) is widely used for the diagnosis of heart diseases. However, ECG signals are easily contaminated by different noises. This paper presents efficient denoising and compressed sensing (CS) schemes for ECG signals based on basis pursuit (BP). In the process of signal denoising and reconstruction, the low-pass filtering method and alternating direction method of multipliers (ADMM) optimization algorithm are used. This method introduces dual variables, adds a secondary penalty term, and reduces constraint conditions through alternate optimization to optimize the original variable and the dual variable at the same time. This algorithm is able to remove both baseline wander and Gaussian white noise. The effectiveness of the algorithm is validated through the records of the MIT-BIH arrhythmia database. The simulations show that the proposed ADMM-based method performs better in ECG denoising. Furthermore, this algorithm keeps the details of the ECG signal in reconstruction and achieves higher signal-to-noise ratio (SNR) and smaller mean square error (MSE).


Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Greg Beresford‐Smith ◽  
Rolf N. Rango

Strongly dispersive noise from surface waves can be attenuated on seismic records by Flexfil, a new prestack process which uses wavelet spreading rather than velocity as the criterion for noise discrimination. The process comprises three steps: trace‐by‐trace compression to collapse the noise to a narrow fan in time‐offset (t-x) space; muting of the noise in this narrow fan; and inverse compression to recompress the reflection signals. The process will work on spatially undersampled data. The compression is accomplished by a frequency‐domain, linear operator which is independent of trace offset. This operator is the basis of a robust method of dispersion estimation. A flexural ice wave occurs on data recorded on floating ice in the near offshore of the North Slope of Alaska. It is both highly dispersed and of broad frequency bandwidth. Application of Flexfil to these data can increase the signal‐to‐noise ratio up to 20 dB. A noise analysis obtained from a microspread record is ideal to use for dispersion estimation. Production seismic records can also be used for dispersion estimation, with less accurate results. The method applied to field data examples from Alaska demonstrates significant improvement in data quality, especially in the shallow section.


Sign in / Sign up

Export Citation Format

Share Document