Unraveling the metabolome in prostate tumorigenesis: Effects by an oncogenic isopeptidase

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e16148-e16148
Author(s):  
C. Priolo ◽  
M. Loda

e16148 Background: Cancer cells undergo fundamental changes in their metabolism, including a higher rate of glycolysis and an increase in de novo fatty acid synthesis. The high incorporation of glucose into tumor cells has already been exploited in cancer diagnostics with the generation of the FDG-PET scan technology. However, some tumors including those arising in the prostate are less prone to FDG-PET imaging and could benefit from other imaging techniques based on alternative metabolic features. We asked whether prostate epithelial cell transformation driven by specific oncogenes results in a typical metabolic profiling, whose characterization may be useful to improve diagnostics and to address new therapeutics. Methods: Normal prostate epithelial cells (RWPE-1 and PrEC) were transformed by overexpressing known oncogenes, such as the protein kinase AKT1 and the de-ubiquitinating enzyme (isopeptidase) USP2a. These cells were then subjected to mass spectrometry-based metabolomics, gene expression analysis, oxygen consumption and glucose uptake assays. Multiple bioinformatic tools were utilized for data mining and pathway visualization. Results: We integrated data from different high-throughput technologies to map metabolic changes induced during prostate tumorigenesis by genes that are often altered in prostate cancer. A different metabolic profiling was found in association to each specific oncogene. In fact, extremely significant alterations were found in the glycolytic pathways in the case of AKT-driven transformation, whereas changes in the lipid metabolism and in some aminoacids were prevalent in USP2a-overexpressing cells. Complementary assays including oxygen consumption and glucose uptake measurement confirmed the global metabolic analysis. Conclusions: These results suggest that tumors showing different genetic alterations may be characterized by a different metabolic profiling, whose assessment can potentially improve diagnostics and individualized treatment. Metabolic profiling analysis of human prostate tumors is currently ongoing. No significant financial relationships to disclose.

2018 ◽  
Author(s):  
Jeffrey R. Brender ◽  
Shun Kishimoto ◽  
Hellmut Merkle ◽  
Galen Reed ◽  
Ralph E. Hurd ◽  
...  

AbstractMetabolic reprogramming is one of the defining features of cancer and abnormal metabolism is associated with many other pathologies. Molecular imaging techniques capable of detecting such changes have become essential for cancer diagnosis, treatment planning, and surveillance. In particular, 18F-FDG (fluorodeoxyglucose) PET has emerged as an essential imaging modality for cancer because of its unique ability to detect a disturbed molecular pathway through measurements of glucose uptake. However, FDG-PET has limitations that restrict its usefulness in certain situations and the information gained is limited to glucose uptake only. 13C magnetic resonance spectroscopy theoretically has certain advantages over FDG-PET, but its inherent low sensitivity has restricted its use mostly to single voxel measurements. We show here a new method of imaging glucose metabolism in vivo that relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular value decomposition, tensor decomposition. Using this procedure, we achieve an order of magnitude increase in signal to noise in both dDNP and non-hyperpolarized non-localized experiments without sacrificing accuracy. In CSI experiments an approximately 30-fold increase was observed, enough that the glucose to lactate conversion indicative of the Warburg effect can be imaged without hyper-polarization with a time resolution of 12 s and an overall spatial resolution that compares favorably to 18F-FDG PET.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2014 ◽  
Vol 81 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Hiroyuki Takahashi ◽  
Hiroyuki Yamashita ◽  
Miyako Morooka ◽  
Kazuo Kubota ◽  
Yuko Takahashi ◽  
...  

BMJ Open ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. e027772 ◽  
Author(s):  
GAM Govaert ◽  
MGG Hobbelink ◽  
IHF Reininga ◽  
P Bosch ◽  
TC Kwee ◽  
...  

IntroductionThe optimal diagnostic imaging strategy for fracture-related infection (FRI) remains to be established. In this prospective study, the three commonly used advanced imaging techniques for diagnosing FRI will be compared. Primary endpoints are (1) determining the overall diagnostic performances of white blood cell (WBC) scintigraphy, fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) in patients with suspected FRI and (2) establishing the most accurate imaging strategy for diagnosing FRI.Methods and analysisThis study is a non-randomised, partially blinded, prospective cohort study involving two level 1 trauma centres in The Netherlands. All adult patients who require advanced medical imaging for suspected FRI are eligible for inclusion. Patients will undergo all three investigational imaging procedures (WBC scintigraphy, FDG-PET and MRI) within a time frame of 14 days after inclusion. The reference standard will be the result of at least five intraoperative sampled microbiology cultures, or, in case of no surgery, the clinical presence or absence of infection at 1 year follow-up. Initially, the results of all three imaging modalities will be available to the treating team as per local protocol. At a later time point, all scans will be centrally reassessed by nuclear medicine physicians and radiologists who are blinded for the identity of the patients and their clinical outcome. The discriminative ability of the imaging modalities will be quantified by several measures of diagnostic accuracy.Ethics and disseminationApproval of the study by the Institutional Review Board has been obtained prior to the start of this study. The results of this trial will be disseminated by publication of peer-reviewed manuscripts, presentation in abstract form at scientific meetings and data sharing with other investigators through academically established means.Trial registration numberThe IFI trial is registered in the Netherlands Trial Register (NTR7490).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dina L. Halegoua-De Marzio ◽  
Jonathan M. Fenkel

Nonalcoholic fatty liver disease (NAFLD) affects up to 30% of adults and is the most common liver disease in Western nations. NAFLD is associated with central adiposity, insulin resistance, type 2 diabetes mellitus, hyperlipidemia, and cardiovascular disease. It encompasses the entire spectrum of fatty liver diseases from simple steatosis to nonalcoholic steatohepatitis (NASH) with lobular/portal inflammation, hepatocellular necrosis, and fibrosis. Of those who develop NASH, 15–25% will progress to end stage liver disease and hepatocellular carcinoma over 10–20 years. Its pathogenesis is complex, and involves a state of lipid accumulation due to increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, and increased incidence of de novo lipogenesis. Plasma aminotransferases and liver ultrasound are helpful in the diagnosis of NAFLD/NASH, but a liver biopsy is often required for definitive diagnosis. Many new plasma biomarkers and imaging techniques are now available that should improve the ability to diagnose NAFLD noninvasively Due to its complexity and extrahepatic complications, treatment of NAFLD requires a multidisciplinary approach with excellent preventative care, management, and treatment. This review will evaluate our current understanding of NAFLD, with a focus on existing therapeutic approaches and potential pharmacological developments.


2021 ◽  
Author(s):  
Umut Elboğa ◽  
Zeynel Abidin Sayiner ◽  
Ertan Şahin ◽  
Saadettin Öztürk ◽  
Yusuf Burak Çayırlı ◽  
...  

Abstract Context: PET CT imaging methods based on fibroblast activation protein inhibitors (FAPIs) have recently demonstrated promising clinical results. Objective: We aimed to evaluate the use of 68Ga-FAPI PET / CT and 18FDG PET / CT imaging techniques to detect the metastatic foci in recurrent papillary thyroid carcinoma.Design and Patients: This is a prospective study. Patients who were diagnosed with papillary thyroid carcinoma, achieved biochemical recovery after the first operation and having recurrence for papillary thyroid carcinoma on the follow up were included in the study. [68Ga] Ga-DOTA-FAPI-04 and [18F] FDG PET / CT were performed for comparative purpose and detection of recurrence localization.Results: [18F] FDG PET / CT detected the metastatic foci in 21 of 29 patients (72.4%), [68Ga] Ga-DOTA-FAPI-04 was able to detect the metastatic foci in 25 of 29 patients (86.2%). When the two imaging techniques were used together, the metastatic foci in 27 of the 29 patients could be detected (93.1%.). Also between the [18F] FDG PET / CT SUVmax values and [68Ga] Ga-DOTA-FAPI-04 SUVmax values, a statistical significance was found in favor of 68Ga-FAPI PET (p = 0,002).Conclusion: In conclusion, 68Ga-FAPI PET imaging technique can be used as an alternative method to detect the metastatic focus or foci in patients with recurrent papillary thyroid carcinoma. It can also increase the chance of metastatic focus or foci detection when used in conjunction with the 18 FDG PET.


1976 ◽  
Vol 231 (2) ◽  
pp. 489-494 ◽  
Author(s):  
ET MacKenzie ◽  
J McCulloch ◽  
AM Harper

The influence of brain norepinephrine on cerebral metabolism and blood flow was examined because exogenous norepinephrine, administered in a way that the blood-brain barrier is bypassed, has been shown to effect pronounced changes in the cerebral circulation. Reserpine (40 mug/kg, by intracarotid infusion) was administered in order to release brain norepinephrine in five anesthetized baboons. Reserpine significantly increased cerebral oxygen consumption (23%) and cerebral blood flow (50%). This response lasted for approximately 60 min. In a further five animals, effects of central beta-adrenoreceptor blockade were studied. Pro pranolol (12 mug/kg-min) produced an immediate, significant reduction in both cerebral oxygen consumption (40%) and cerebral glucose uptake (39%). Cerebral blood flow was reduced minimally. However, the responsiveness of the cerebral circulation to induced hypercapnia was severely attenuated from a gradient of 3.22 before, to 1,11 after, administration. These experiments suggest that central norepinephrine can influence the cerebral circulation primarily through noradrenergic effects on brain metabolism.


2021 ◽  
Vol 22 (23) ◽  
pp. 13141
Author(s):  
Elisabetta Canetta

Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qi Li ◽  
Mulun Xiao ◽  
Yibo Shi ◽  
Jinhao Hu ◽  
Tianxiang Bi ◽  
...  

Abstract Background Eukaryotic translation initiation factors (eIFs) are the key factors to synthesize translation initiation complexes during the synthesis of eukaryotic proteins. Besides, eIFs are especially important in regulating the immune function of tumor cells. However, the effect mechanism of eIFs in prostate cancer remains to be studied, which is precisely the purpose of this study. Methods In this study, three groups of prostate cancer cells were investigated. One group had its eIF5B gene knocked down; another group had its Programmed death 1 (PD-L1) overexpressed; the final group had its Wild-type p53-induced gene 1 (Wig1) overexpressed. Genetic alterations of the cancer cells were performed by plasmid transfection. The expression of PD-L1 mRNA was detected by quantitative real-time PCR (qRT-PCR), and the expressions of PD-L1 and eIF5B proteins were observed by western blot assays. Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell and Transwell martrigel were used to investigated cell proliferation, apoptosis, migration and invasion, respectively. The effect of peripheral blood mononuclear cells (PBMCs) on tumor cells was observed, and the interaction between eIF5B and Wig1 was revealed by co-immunoprecipitation (CoIP) assay. Finally, the effects of interference with eIF5B expression on the growth, morphology, and immunity of the tumor, as well as PD-L1 expression in the tumor, were verified by tumor xenograft assays in vivo. Results Compared with normal prostate epithelial cells, prostate cancer cells revealed higher expressions of eIF5B and PD-L1 interference with eIF-5B expression can inhibit the proliferation, migration, invasion and PD-L1 expression of prostate cancer cells. Meanwhile, the cancer cell group with interference with eIF5B expression also demonstrated greater, apoptosis and higher vulnerability to PBMCs. CoIP assays showed that Wig1 could bind to eIF5B in prostate cancer cells, and its overexpression can inhibit the proliferation, migration, invasion and PD-L1 expression of cancer cells while promoting apoptosis. Moreover, interference with eIF5B expression can inhibit tumor growth, destroy tumor morphology, and suppress the proliferation of tumor cells. Conclusion eIF5B can promote the expression of PD-L1 by interacting with Wig1. Besides, interference with eIF5B expression can inhibit the proliferation, migration, invasion and immunosuppressive response of prostate cancer cells. This study proposes a new target, eIF5B, for immunotherapy of prostate cancer.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Xiao Li ◽  
Skander Jemaa ◽  
Richard AD Carano ◽  
Thomas Bengtsson ◽  
Joseph N Paulson ◽  
...  

Background: Despite effective first-line (1L) treatment options for patients with NHL almost 40% of patients with diffuse large B cell lymphoma (DLBCL) will have a poor response or disease progression after 1L treatment. In follicular lymphoma (FL) 15-20% of patients experience early relapse, and almost 8% may develop transformation to more aggressive forms of the disease (such as DLBCL) after 1L treatment. More accurate identification of patients at high-risk for a poor prognosis with the standard of care could lead to improved outcomes. Although the International Prognostic Index (IPI) and its FL extension (FLIPI) are often used to stratify patients by prognosis, they have relatively modest sensitivity and specificity for predicting individualized risk. Radiomics is a promising approach to improve upon existing prognostic models because it provides a comprehensive quantification of tumor lesion morphology and texture derived from FDG-PET scans and may provide new and important information about disease biology and progression risk on an individual level. Methods: A collection of 107 radiomics features [pyradiomics v2.20] that describe shape, size or volume and texture of tumor lesions, including complex features that are believed to reflect the underlying biological tumor phenotype and microenvironment, were derived for n=1093 de novo DLBCL patients with available baseline FDG-PET scans from the Phase III GOYA study (NCT01287741) evaluating obinutuzumab plus CHOP chemotherapy (G-CHOP) versus rituximab plus CHOP chemotherapy (R-CHOP) (Vitolo, et al. J Clin Oncol 2017). The same set of features were also extracted from n=451 de novo FL patients with available baseline FDG-PET scans from the Phase III GALLIUM study (NCT01332968) comparing obinutuzumab plus chemotherapy with rituximab plus chemotherapy [Marcus, et al. N Engl J Med 2017]. To investigate the association between the derived radiomics features along with baseline clinical variables and progression-free survival (PFS), a Cox proportional hazard model with L1 regularization was trained and internally validated using the GOYA study. We used a nested Monte Carlo Cross Validation (nMCCV) strategy to train our model and provide high- and low-risk group predictions on held-out samples of data. This modeling strategy allows us to make a group prediction on all GOYA patients while reducing overfitting. To evaluate prognostic performance, we ported the final model trained using the GOYA study (called the Li prognostic model) to the fully independent GALLIUM study. Results: Using our nMCCV approach we identified 11 factors, with an inclusion probability of >50%, that are associated with PFS of DLBCL patients (Figure A). Included within the top features are several image-derived morphometric (i.e. metabolic tumor volume, surface area) and radiomics features (i.e. tumor elongation, NGTDM contrast, GLCM inverse variance). When stratifying patients on the predicted (via majority vote) low-risk vs high-risk groupings we found that our high-risk group had significantly worse prognosis vs the low-risk group (Figure B). In comparison, the high-risk group from the IPI model (defined as IPI > 2) had significantly worse prognosis vs the low-risk group, but the performance was slightly worse than our model (Figure C). PFS probability estimates at 2 and 5 years for predicted high-risk patients was 72.7% [70.0-76.6] and 59.8% [54.8-65.2] (vs 74% [70.0-78.2] and 60.4% [55.1-66.2] for the IPI model). After training and testing in the DLBCL population, we evaluated the prognostic performance of our model in an independent set of FL patients. We found that high-risk FL patients had a significantly worse prognosis than the low-risk group (Figure D). PFS probability estimates at 2 and 5 years for predicted high-risk patients was 77.4% [69.8-85.8] and 48.9% [39.5-60.5] (vs. 80% [0.748-0.856] and 58.3% [51.6-65.9] in the full group). Conclusions: Radiomics features are prognostic in DLBCL and provide a modest improvement in prognostic performance when combined with traditional IPI scores, clinical features, and lab values (vs IPI alone). Our prognostic signature, developed in DLBCL, has significant prognostic performance in an independent dataset of patients with FL. While these results are promising, our FL validation dataset was relatively small and further evidence is required to confirm our findings. Disclosures Li: Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current Employment, Current equity holder in publicly-traded company. Jemaa:F. Hoffmann-La Roche: Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Carano:F. Hoffmann-La Roche: Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Bengtsson:Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current equity holder in publicly-traded company. Paulson:F. Hoffmann-La Roche: Current equity holder in private company, Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Jansen:F. Hoffmann-La Roche: Current Employment; Molecular Health GmbH: Ended employment in the past 24 months; F. Hoffmann-La Roche, Abbvie, Alphabet, other (non-healthcare), indexed funds and ETFs: Current equity holder in publicly-traded company. Nielsen:F. Hoffmann-La Roche: Current Employment, Current equity holder in publicly-traded company. Hibar:Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current equity holder in publicly-traded company.


Sign in / Sign up

Export Citation Format

Share Document