The WELL® Community Standard

2021 ◽  
pp. 98-121
Author(s):  
Traci Rose Rider ◽  
Margaret van Bakergem
Keyword(s):  
2010 ◽  
Vol 10 (1) ◽  
pp. R110.000133 ◽  
Author(s):  
Lennart Martens ◽  
Matthew Chambers ◽  
Marc Sturm ◽  
Darren Kessner ◽  
Fredrik Levander ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 828
Author(s):  
Aleksandra Skalska ◽  
Elzbieta Wolny ◽  
Manfred Beckmann ◽  
John H. Doonan ◽  
Robert Hasterok ◽  
...  

Seed germination is a complex process during which a mature seed resumes metabolic activity to prepare for seedling growth. In this study, we performed a comparative metabolomic analysis of the embryo and endosperm using the community standard lines of three annual Brachypodium species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs) that has wider ecological range than the other two species. We explored how far the metabolomic impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after imbibition (HAI) with water when germination was initiated. Metabolic changes during germination were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following the release of nutrients to the respective embryos. Amino acid changes in both the embryo and endosperm were broadly consistent across the species. Taking our data together, the formation of BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an elevated sugar metabolism that played a vital role in germination. If these observations are confirmed in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive changes.


2004 ◽  
Vol 22 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Henning Hermjakob ◽  
Luisa Montecchi-Palazzi ◽  
Gary Bader ◽  
Jérôme Wojcik ◽  
Lukasz Salwinski ◽  
...  

Author(s):  
Matthew Murphy ◽  
Ann Ding ◽  
Justin Berk ◽  
Josiah Rich ◽  
George Bayliss

Chronic kidney disease (CKD) affects 15% of US adults and is associated with increased morbidity and mortality. CKD disproportionately impacts certain populations, including racial and ethnic minorities and individuals from disadvantaged socioeconomic backgrounds. These groups are also disproportionately impacted by incarceration and barriers to accessing health services. Incarceration represents an opportunity to link marginalized individuals to CKD care. Despite a legal obligation to provide a community standard of care including the screening and treatment of individuals with CKD, there is little evidence to suggest systematic efforts are in place to address this prevalent, costly, and ultimately fatal condition. This review highlights unrealized opportunities to connect individuals with CKD to care within the criminal justice system and as they transition to the community, while underscoring the need for more evidence-based strategies to address the health impact of CKD on over-represented communities in the criminal justice system.


Author(s):  
Frederick Petry ◽  
Roy Ladner ◽  
Kalyan Moy Gupta ◽  
Philip Moore ◽  
David W. Aha

This article describes an Integrated Web Services Brokering System (IWB) to support the automated discovery and application integration of Web Services. In contrast to more static broker approaches that deal with specific data servers, our approach creates a dynamic knowledge base from Web Service interface specifications. This assists with brokering of requests to multiple data providers even when those providers have not implemented a community standard interface or have implemented different versions of a community standard interface. A specific context we illustrate here is the domain of meteorological and oceanographic (MetOc) Web Services. Our approach includes the use of specific domain ontologies and has evaluated the use of case-based classification in the IWB to support automated Web Services discovery. It was also demonstrated that the mediation approach could be extended to OGC Web Coverage Services.


2019 ◽  
Vol 214 ◽  
pp. 05034
Author(s):  
Martin Vassilev ◽  
Vassil Vassilev ◽  
Alexander Penev ◽  
Petya Vassileva

Collaboration in research is essential for saving time and money. The field of high-energy physics (HEP) is no different. The higher level of collaboration the stronger the community. The HEP field encourages organizing various events in format and size such as meetings, workshops and conferences. Making attending a HEP event easier leverages cooperation and dialogue and this is what makes Indico service defacto a community standard. The paper describes HEPCon, a cross-platform mobile application which collects all information available on Indico and makes it available on a portable device. It keeps most of the data locally which speeds up the interaction. HEP-Con uses a shared code base which allows easy multiplatform development and support. There are iOS and Android implementations available for free download. The project is based on C# and we use the Xamarin mobile app technology for building native iOS and Android apps. SQLite database is responsible for retrieving and storing conference data. The app can be used to preview data from past CHEP conferences but the tool is implemented generic enough to support other Indico events.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76 ◽  
Author(s):  
Aaron S. Burton ◽  
Sarah E. Stahl ◽  
Kristen K. John ◽  
Miten Jain ◽  
Sissel Juul ◽  
...  

The MinION sequencer has made in situ sequencing feasible in remote locations. Following our initial demonstration of its high performance off planet with Earth-prepared samples, we developed and tested an end-to-end, sample-to-sequencer process that could be conducted entirely aboard the International Space Station (ISS). Initial experiments demonstrated the process with a microbial mock community standard. The DNA was successfully amplified, primers were degraded, and libraries prepared and sequenced. The median percent identities for both datasets were 84%, as assessed from alignment of the mock community. The ability to correctly identify the organisms in the mock community standard was comparable for the sequencing data obtained in flight and on the ground. To validate the process on microbes collected from and cultured aboard the ISS, bacterial cells were selected from a NASA Environmental Health Systems Surface Sample Kit contact slide. The locations of bacterial colonies chosen for identification were labeled, and a small number of cells were directly added as input into the sequencing workflow. Prepared DNA was sequenced, and the data were downlinked to Earth. Return of the contact slide to the ground allowed for standard laboratory processing for bacterial identification. The identifications obtained aboard the ISS, Staphylococcus hominis and Staphylococcus capitis, matched those determined on the ground down to the species level. This marks the first ever identification of microbes entirely off Earth, and this validated process could be used for in-flight microbial identification, diagnosis of infectious disease in a crewmember, and as a research platform for investigators around the world.


2019 ◽  
Vol 147 (5) ◽  
pp. 1699-1712 ◽  
Author(s):  
Bo Christiansen

Abstract In weather and climate sciences ensemble forecasts have become an acknowledged community standard. It is often found that the ensemble mean not only has a low error relative to the typical error of the ensemble members but also that it outperforms all the individual ensemble members. We analyze ensemble simulations based on a simple statistical model that allows for bias and that has different variances for observations and the model ensemble. Using generic simplifying geometric properties of high-dimensional spaces we obtain analytical results for the error of the ensemble mean. These results include a closed form for the rank of the ensemble mean among the ensemble members and depend on two quantities: the ensemble variance and the bias both normalized with the variance of observations. The analytical results are used to analyze the GEFS reforecast where the variances and bias depend on lead time. For intermediate lead times between 20 and 100 h the two terms are both around 0.5 and the ensemble mean is only slightly better than individual ensemble members. For lead times larger than 240 h the variance term is close to 1 and the bias term is near 0.5. For these lead times the ensemble mean outperforms almost all individual ensemble members and its relative error comes close to −30%. These results are in excellent agreement with the theory. The simplifying properties of high-dimensional spaces can be applied not only to the ensemble mean but also to, for example, the ensemble spread.


Sign in / Sign up

Export Citation Format

Share Document