scholarly journals Dehydroxymethylepoxyquinomicin, a Novel Nuclear Factor-κB Inhibitor, Enhances Antitumor Activity of Taxanes in Anaplastic Thyroid Cancer Cells

Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5357-5365 ◽  
Author(s):  
Zhaowei Meng ◽  
Norisato Mitsutake ◽  
Masahiro Nakashima ◽  
Dmytro Starenki ◽  
Michiko Matsuse ◽  
...  

Nuclear factor κB (NF-κB), as an antiapoptotic factor, crucially affects the outcomes of cancer treatments, being one of the major culprits of resistance to chemotherapy. In this study, we investigated whether dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-κB inhibitor, can enhance antitumor activities of taxanes in anaplastic thyroid cancer (ATC) cells. Taxanes induced NF-κB activation in ATC cells, which could compromise the therapeutic effect of the drugs. However, DHMEQ, by inhibiting the nuclear translocation of NF-κB, completely suppressed the DNA binding capacities of NF-κB and lowered the levels of nuclear NF-κB protein. Compared with single treatment (either taxane or DHMEQ), the combined treatment strongly potentiated apoptosis, confirmed by cell survival assay; Western blotting for poly (ADP-ribose) polymerase, caspase 3, X-linked inhibitor of apoptosis, and survivin; and flow cytometry for annexin V. Furthermore, we also demonstrate for the first time that the combined treatment showed significantly greater inhibitory effect on tumor growth in a nude mice xenograft model. These findings suggest that taxanes are able to induce NF-κB activation in ATC cells, which could attenuate antitumor activities of the drugs, but inhibition of NF-κB by DHMEQ creates a chemosensitive environment and greatly enhances apoptosis in taxanes-treated ATC cells in vitro and in vivo. Thus, DHMEQ may emerge as an attractive therapeutic strategy to enhance the response to taxanes in ATCs.

2021 ◽  
Author(s):  
Yu-Ling Lu ◽  
Yu-Tung Huang ◽  
Ming-Hsien Wu ◽  
Ting-Chao Chou ◽  
Richard J Wong ◽  
...  

Wee1 is a kinase that regulates the G2/M progression by inhibition of CDK1, which is critical for ensuring DNA damage repair before initiation of mitotic entry. Targeting Wee1 may be a potential strategy in the treatment of anaplastic thyroid cancer, a rare but lethal disease. The therapeutic effects of adavosertib, a Wee1 inhibitor for anaplastic thyroid cancer was evaluated in this study. Adavosertib inhibited cell growth in three anaplastic thyroid cancer cell lines in a dose-dependent manner. Cell cycle analysis revealed cells were accumulated in the G2/M phase. Adavosertib induced caspase-3 activity and led to apoptosis. Adavosertib monotherapy showed significant retardation of the growth of two anaplastic thyroid cancer tumor models. The combination of adavosertib with dabrafenib and trametinib revealed strong synergism in vitro and demonstrated robust suppression of tumor growth in vivo in anaplastic thyroid cancer xenograft models with BRAFV600E mutation. The combination of adavosertib with either sorafenib or lenvatinib also demonstrated synergism in vitro and had strong inhibition of tumor growth in vivo in an anaplastic thyroid cancer xenograft model. No appreciable toxicity appeared in mice treated with either single agent or combination treatment. Our findings suggest adavosertib holds the promise for the treatment of patients with anaplastic thyroid cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yanhui Tan ◽  
Minhong Ke ◽  
Zhichao Li ◽  
Yan Chen ◽  
Jiehuang Zheng ◽  
...  

It is a viable strategy to inhibit osteoclast differentiation for the treatment of osteolytic diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastases. Here we assessed the effects of insulicolide A, a natural nitrobenzoyl sesquiterpenoid derived from marine fungus, on receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and its protective effects on LPS-induced osteolysis mice model in vivo. The results demonstrated that insulicolide A inhibited osteoclastogenesis from 1 μM in vitro. Insulicolide A could prevent c-Fos and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) nuclear translocation and attenuate the expression levels of osteoclast-related genes and DC-STAMP during RANKL-stimulated osteoclastogenesis but have no effects on NF-κB and MAPKs. Insulicolide A can also protect the mice from LPS-induced osteolysis. Our research provides the first evidence that insulicolide A may inhibit osteoclastogenesis both in vitro and in vivo, and indicates that it may have potential for the treatment of osteoclast-related diseases.


2020 ◽  
Vol 19 (1) ◽  
pp. 97-110
Author(s):  
Mohammad Zamanian ◽  
Gholamreza Bazmandegan ◽  
Antoni Sureda ◽  
Eduardo Sobarzo-Sanchez ◽  
Hasan Yousefi-Manesh ◽  
...  

: Troxerutin (TRX), a semi-synthetic bioflavonoid derived from rutin, has been reported to exert several pharmacological effects including antioxidant, anti-inflammatory, antihyperlipidemic, and nephroprotective. However, the related molecular details and its mechanisms remain poorly understood. In the present review, we presented evidences from the diversity in vitro and in vivo studies on the therapeutic potential of TRX against neurodegenerative, diabetes, cancer and cardiovascular diseases with the purpose to find molecular pathways related to the treatment efficacy. TRX has a beneficial role in many diseases through multiple mechanisms including, increasing antioxidant enzymes and reducing oxidative damage, decreasing in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and increasing the antiapoptotic BCL-2, increasing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and downregulating the nuclear factor κB (NFκ). TRX also reduces acetylcholinesterase activity and upregulates phosphoinositide 3- kinase/Akt signaling pathway in Alzheimer’s disease models. Natural products such as TRX may develop numerous and intracellular pathways at several steps in the treatment of many diseases. Molecular mechanisms of action are revealing novel, possible combinational beneficial approaches to treat multiple pathological conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keisuke Enomoto ◽  
Fuyuki Sato ◽  
Shunji Tamagawa ◽  
Mehmet Gunduz ◽  
Naoyoshi Onoda ◽  
...  

Abstract A novel therapeutic approach is urgently needed for patients with anaplastic thyroid cancer (ATC) due to its fatal and rapid progress. We recently reported that ATC highly expressed MYC protein and blocking of MYC through its selective inhibitor, JQ1, decreased ATC growth and improved survival in preclinical models. One of the important roles of MYC is regulation of L-neutral amino acid transporter 1 (LAT1) protein and inhibition of LAT1 would provide similar anti-tumor effect. We first identified that while the human ATC expresses LAT1 protein, it is little or not detected in non-cancerous thyroidal tissue, further supporting LAT1 as a good target. Then we evaluated the efficacy of JPH203, a LAT1 inhibitor, against ATC by using the in vitro cell-based studies and in vivo xenograft model bearing human ATC cells. JPH203 markedly inhibited proliferation of three ATC cell lines through suppression of mTOR signals and blocked cell cycle progression from the G0/G1 phase to the S phase. The tumor growth inhibition and decrease in size by JPH203 via inhibition of mTOR signaling and G0/G1 cell cycle associated proteins were further confirmed in xenograft models. These preclinical findings suggest that LAT1 inhibitors are strong candidates to control ATC, for which current treatment options are highly limited.


2020 ◽  
Vol 21 (16) ◽  
pp. 5669
Author(s):  
Rittibet Yapasert ◽  
Nirush Lertprasertsuk ◽  
Subhawat Subhawa ◽  
Juthathip Poofery ◽  
Bungorn Sripanidkulchai ◽  
...  

Thailand is the country with highest incidence and prevalence of cholangiocarcinoma (CCA) in the world. Due to the frequently late diagnosis that is associated with this disease, most CCA patients are prescribed chemotherapy as a form of treatment. However, CCA is able to resist the presently available chemotherapy, so to the prognosis of this disease is still very poor. In this study, we investigated the anticancer potential of a Thai herbal recipe, Benja Amarit (BJA) against CCA and the relevant mechanisms of action that are involved. We found that BJA inhibited CCA cell viability in a dose-dependent manner, especially in highly invasive KKU-213 cells. The extract induced mitochondrial- and caspase-dependent apoptosis in CCA cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. BJA also triggered autophagy in CCA cells. Nonetheless, the inhibition of autophagy enhanced BJA-induced CCA cell death via apoptosis. An in vivo xenograft model revealed the growth-inhibiting and death-inducing effects of BJA against CCA by targeting apoptosis. However, general toxicity to blood cells, kidneys and the liver, as well as changes in body weight, did not appear. Our findings suggest that the herbal recipe BJA might be used as a potentially new and effective treatment for cholangiocarcinoma patients.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaoping Zhang ◽  
Dan Li ◽  
Chengyou Jia ◽  
Haidong Cai ◽  
Zhongwei Lv ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2006 ◽  
Vol 69 (6) ◽  
pp. 2027-2036 ◽  
Author(s):  
Tamás Letoha ◽  
Erzsébet Kusz ◽  
Gábor Pápai ◽  
Annamária Szabolcs ◽  
József Kaszaki ◽  
...  

2000 ◽  
Vol 11 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Belinda S. Hall ◽  
Winnie Tam ◽  
Ranjan Sen ◽  
Miercio E. A. Pereira

The transcription factor nuclear factor-κB (NF-κB) is central to the innate and acquired immune response to microbial pathogens, coordinating cellular responses to the presence of infection. Here we demonstrate a direct role for NF-κB activation in controlling intracellular infection in nonimmune cells. Trypanosoma cruzi is an intracellular parasite of mammalian cells with a marked preference for infection of myocytes. The molecular basis for this tissue tropism is unknown. Trypomastigotes, the infectious stage of T. cruzi, activate nuclear translocation and DNA binding of NF-κB p65 subunit and NF-κB-dependent gene expression in epithelial cells, endothelial cells, and fibroblasts. Inactivation of epithelial cell NF-κB signaling by inducible expression of the inhibitory mutant IκBaM significantly enhances parasite invasion.T. cruzi do not activate NF-κB in cells derived from skeletal, smooth, or cardiac muscle, despite the ability of these cells to respond to tumor necrosis factor-α with NF-κB activation. The in vitro infection level in these muscle-derived cells is more than double that seen in the other cell types tested. Therefore, the ability of T. cruzi to activate NF-κB correlates inversely with susceptibility to infection, suggesting that NF-κB activation is a determinant of the intracellular survival and tissue tropism ofT. cruzi.


Sign in / Sign up

Export Citation Format

Share Document