scholarly journals Notch1 Is Regulated by Chorionic Gonadotropin and Progesterone in Endometrial Stromal Cells and Modulates Decidualization in Primates

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2884-2896 ◽  
Author(s):  
Yalda Afshar ◽  
Lucio Miele ◽  
Asgerally T. Fazleabas

No other tissue in the body undergoes such a vast and extensive growth and remodeling in a relatively short period of time as the primate endometrium. Endometrial integrity is coordinated by ovarian hormones, namely, estrogens, progesterone, and the embryonic hormone chorionic gonadotropin (CG). These regulated events modulate the menstrual cycle and decidualization. The Notch family of transmembrane receptors regulate cellular proliferation, differentiation, and apoptosis, cellular processes required to maintain endometrial integrity. In two primate models, the human and the simulated pregnant baboon model, we demonstrated that Notch1 is increased during the window of uterine receptivity, concomitant with CG. Furthermore, CG combined with estrogens and progesterone up-regulate the level of Notch1, whereas progesterone increases the intracellular transcriptionally competent Notch1, which binds in a complex with progesterone receptor. Inhibition of Notch1 prevented decidualization, and alternatively, when decidualization is biochemically recapitulated in vitro, Notch1 is down-regulated. A focused microarray demonstrated that the Notch inhibitor, Numb, dramatically increased when Notch1 decreased during decidualization. We propose that in the endometrium, Notch has a dual role during the window of uterine receptivity. Initially, Notch1 mediates a survival signal in the uterine endometrium in response to CG from the implanting blastocyst and progesterone, so that menstrual sloughing is averted. Subsequently, Notch1 down-regulation may be critical for the transition of stromal fibroblast to decidual cells, which is essential for the establishment of a successful pregnancy.

2020 ◽  
Vol 26 (6) ◽  
pp. 413-424
Author(s):  
Mengchen Zhu ◽  
Shanling Yi ◽  
Xiaomin Huang ◽  
Junan Meng ◽  
Haixiang Sun ◽  
...  

Abstract Homeobox A10 (HOXA10) is a characterized marker of endometrial receptivity. The mechanism by which hCG intrauterine infusion promotes embryo implantation is still unclear. This study seeks to investigate whether hCG improves endometrial receptivity by increasing expression of HOXA10. HOXA10 expression with human chorionic gonadotropin stimulation was analyzed in vitro and in vivo. Our results demonstrate that HOXA10 was decreased in the endometria of recurrent implantation failure patients compared to that in the healthy control fertile group, also we observed that hCG intrauterine infusion increased endometrial HOXA10 expression. HOXA10, blastocyst-like spheroid expansion area was increased, whereas DNA (cytosine-5-)-methyltransferase 1 was decreased when human endometrial stromal cells (hESCs) were treated with 0.2 IU/ml of hCG for 48 h. HOXA10 promoter methylation was also reduced after hCG treatment. Collagen XV (ColXV) can repress the expression of DNA (cytosine-5-)-methyltransferase 1, and hCG treatment increased the expression of ColXV. However, when the hESCs were treated with LH/hCG receptor small interfering RNA to knock down LH/hCG receptor, hCG treatment failed to repress DNA (cytosine-5-)-methyltransferase 1 expression or to increase ColXV expression. Our findings suggest that hCG may promote embryo implantation by increasing the expression of HOXA10.


2001 ◽  
Vol 86 (12) ◽  
pp. 5964-5972
Author(s):  
Antonis Makrigiannakis ◽  
George Coukos ◽  
Anastasia Mantani ◽  
Prokopis Prokopakis ◽  
Geoffrey Trew ◽  
...  

The Wilms’ tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52–54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1–4 d) induced WT-1 mRNA (P < 0.05) and increased protein levels (P < 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


Endocrinology ◽  
2020 ◽  
Vol 161 (6) ◽  
Author(s):  
Maiko Kakita-Kobayashi ◽  
Hiromi Murata ◽  
Akemi Nishigaki ◽  
Yoshiko Hashimoto ◽  
Shinnosuke Komiya ◽  
...  

Abstract Endometrial stromal cells differentiate into decidual cells through the process of decidualization. This differentiation is critical for embryo implantation and the successful establishment of pregnancy. Recent epidemiological studies have suggested that thyroid hormone is important in the endometrium during implantation, and it is commonly believed that thyroid hormone is essential for proper development, differentiation, growth, and metabolism. This study aimed to investigate the impact of thyroid hormone on decidualization in human endometrial stromal cells (hESCs) and define its physiological roles in vitro by gene targeting. To identify the expression patterns of thyroid hormone, we performed gene expression profiling of hESCs during decidualization after treating them with the thyroid hormone levothyroxine (LT4). A major increase in decidual response was observed after combined treatment with ovarian steroid hormones and thyroid hormone. Moreover, LT4 treatment also affected the regulation of many transcription factors important for decidualization. We found that type 3 deiodinase, which is particularly important in fetal and placental tissues, was upregulated during decidualization in the presence of thyroid hormone. Further, it was observed that progesterone receptor, an ovarian steroid hormone receptor, was involved in thyroid hormone–induced decidualization. In the absence of thyroid hormone receptor (TR), due to the simultaneous silencing of TRα and TRβ, thyroid hormone expression was unchanged during decidualization. In summary, we demonstrated that thyroid hormone is essential for decidualization in the endometrium. This is the first in vitro study to find impaired decidualization as a possible cause of infertility in subclinical hypothyroidism (SCH) patients.


2008 ◽  
Vol 20 (9) ◽  
pp. 11
Author(s):  
B. M. Hardman ◽  
L. M. Kilpatrick ◽  
A. N. Stephens ◽  
J. I. C. Chen ◽  
P. Stanton ◽  
...  

We have previously demonstrated that proprotein convertase 5/6 (PC6), a member of the proprotein convertase (PC) family, is a critical endometrial factor for implantation. PC6 is upregulated in the endometrium specifically at implantation in association with epithelial differentiation (in human and monkey) and stromal cell decidualisation (in the mouse, human and monkey). Knockdown of endometrial PC6 during early pregnancy in mice in vivo led to complete failure of implantation, while blocking of PC6 production in human endometrial stromal cells in vitro inhibited decidualisation. PCs convert a range of precursor proteins of important functions into their bioactive forms; they are thus regarded as critical ‘master switch’ molecules. We hypothesise that PC6 exerts its roles in the endometrium by regulating proteins of diverse functions essential for implantation. In this study, we utilised proteomic technology and aimed to identify proteins that are specifically cleaved by PC6 in human endometrial stromal cells (HESC) during decidualisation. HESC were decidualised with cyclic AMP, the cell lysates were treated with and without recombinant human PC6-A (rPC6-A), and the 2D Differential in Gel Electrophoresis (2D DiGE) protein profiles were compared between the two treatments. We identified several proteins which were differentially cleaved following the addition of rPC6-A. Mass spectrometric analysis confirmed that the most abundant of these were caldesmon, tropomyosin-2, tropomyosin-4, hypoxia Inducible factor-1 and chloride intracellular channel-1. These proteins showed spot shifts in hPC6-A treated HESC lysates consistent with hPC6-A cleavage. western blot analysis confirmed the specific cleavage of caldesmon by PC6 in HESCs, and immunohistochemical analysis showed co-localisation of caldesmon and PC6 in decidual cells in human endometrial tissue. Given that caldesmon is a structural protein previously found to be involved in actin filament reorganisation, our results strongly suggest that PC6 is a mediator of structural remodelling of stromal cells during decidualisation in the endometrium.


2011 ◽  
Vol 25 (8) ◽  
pp. 1444-1455 ◽  
Author(s):  
Antonina I. Frolova ◽  
Kathleen O'Neill ◽  
Kelle H. Moley

Endometrial stromal cells (ESC) must undergo a hormone-driven differentiation to form decidual cells as a requirement of proper embryo implantation. Recent studies from our laboratory have demonstrated that decidualizing cells require glucose transporter 1 expression and an increase in glucose use to complete this step. The present study focuses on the glucose-dependent molecular and metabolic pathways, which are required by ESC for decidualization. Inhibition of glycolysis had no effect on decidualization. However, blockade of the pentose phosphate pathway (PPP) with pharmacologic inhibitors 6-aminonicotinamide or dehydroepiandrosterone (DHEA), and short hairpin RNA-mediated knockdown of glucose-6-phosphate dehydrogenase, the rate-limiting step in the PPP, both led to strong decreases in decidual marker expression in vitro and decreased decidualization in vivo. Additionally, the studies demonstrate that inhibition is due, at least in part, to ribose-5-phosphate depletion, because exogenous nucleoside administration restored decidualization in these cells. The finding that PPP inhibition prevents decidualization of ESC is novel and clinically important, because DHEA is an endogenous hormone produced by the adrenal glands and elevated in a high proportion of women who have polycystic ovary syndrome, the most common endocrinopathy in reproductive age women. Together, this data suggest a mechanistic link between increased DHEA levels, use of glucose via the PPP, and pregnancy loss.


Reproduction ◽  
2015 ◽  
Vol 150 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Chiara Mannelli ◽  
Anna Z Szóstek ◽  
Karolina Lukasik ◽  
Claudiopietro Carotenuto ◽  
Francesca Ietta ◽  
...  

The human endometrium is a fertility-determining tissue and a target of steroid hormones' action. Endocrine disruptors (EDs) can exert adverse effects on the physiological function of the decidua at the maternal–fetal interface. We examined the potential effects of an ED, bisphenol A (BPA), on endometrial maturation/decidualization, receptivity, and secretion of decidual factors (biomarkers). In vitro decidualized, endometrial stromal cells from six hysterectomy specimens were treated with 1 pM–1 μM of BPA, for 24 h and assessed for cell viability and proliferation. Three non-toxic concentrations of BPA (1 μM, 1 nM, and 1 pM) were selected to study its influence on secretion of cell decidualization biomarkers (IGF-binding protein and decidual prolactin (dPRL)), macrophage migration inhibitory factor (MIF) secretion, and hormone receptors' expression (estrogen receptors (ERα and ERβ); progesterone receptors (PRA and PRB); and human chorionic gonadotropin (hCG)/LH receptor (LH-R)). The results showed a decrease in cell viability (P<0.001) in response to BPA at the level of 1 mM. At the non-toxic concentrations used, BPA perturbed the expression of ERα, ERβ, PRA, PRB, and hCG/LH-R (P<0.05). Furthermore, 1 μM of BPA reduced the mRNA transcription of dPRL (P<0.05). Secretion of MIF was stimulated by all BPA treatments, the lowest concentration (1 pM) being the most effective (P<0.001). The multi-targeted disruption of BPA on decidual cells, at concentrations commonly detected in the human population, raises great concern about the possible consequences of exposure to BPA on the function of decidua and thus its potential deleterious effect on pregnancy.


Author(s):  
Xiaoqing Guo ◽  
Qin Li ◽  
Shulan Pi ◽  
Bo Hu ◽  
Yuanpeng Xia ◽  
...  

P2Y receptors (P2YRs), a δ group of rhodopsin-like G protein-coupled receptors (GPCRs), have many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation; thus, they are among the most researched therapeutic targets for use in the clinical treatment of diseases (e.g., clopidogrel, an antithrombotic drug, and Prolacria, a treatment for dry eye). Over the past two decades, GPCRs have been revealed to transmit signals as dimers to increase the diversity of signalling pathways or pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological pharmacological effects. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization. In summary, our review delineates that P2YR-related dimers have new functions and pharmacological activities and maybe a novel direction to improve the effectiveness of medications such as thrombotic events associated with COVID-19.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Makri ◽  
M Castellanos-Uribe ◽  
S May ◽  
W Maalouf

Abstract Study question Whether cell-free microRNAs are part of the embryo-maternal interactome with possible effects on processes related to implantation. Summary answer Specific microRNAs cause major transcriptomic changes in uterine cells and alter cellular proliferation which is pivotal for the implantation of the incoming embryo. What is known already A plethora of molecules present at the uterine luminal fluid including cytokines, growth factors, and adhesion proteins are involved in implantation. However little is known about the roles of extracellular microRNAs (miRNAs) at the embryo-maternal interface. MicroRNAs act mainly as gene regulators and a single miRNA can have thousands of gene targets. MiRNAs are released by blastocysts and uterine cells internalize miRNAs that are present in the extracellular environment. To date there is limited evidence on the molecular actions of these cell-free miRNAs and their effects on processes related to implantation. Study design, size, duration Human endometrial stromal cells (hESCs) were cultured in complete growth medium for 8 consecutive passages. A miRNA mimic experiment in 6 replications was carried out in which endometrial cells were transfected with miR–371a. Gene changes in the hESCs were studied with genome-wide microarray technology and the results were validated in vitro with PCR. Participants/materials, setting, methods The miR–371a mimic was transfected in hESCs using a Lipofectamine reagent. RNA was extracted and the samples were processed with microarray Clariom™ Human Assays using Affymetrix®. The transcriptomic profiles between transfected and control cells were compared using Partek®. Differentially expressed genes were considered significant when p-value was &lt;0.05, false discovery rate, FDR ≤ 0.05 with Benjamini-Hochberg correction, and fold-change of &gt; 1.5 or &lt; –1.5. Functional enrichment analysis was carried out using WebGestalt and Enrichr. Main results and the role of chance MiR–371a altered the expression of 4.760 genes in endometrial cells (p &lt; 0.05, fold-change 1.5). A total of 16 biological processes, 23 cellular components, and 24 molecular pathways were disrupted by this miRNA. WebGestalt analysis found 159 enriched categories including increase of negative cell cycle regulation, apoptosis signalling, and cycle arrest and decreased cell proliferation. Cell cycle was one of the most affected pathways in KEGG analysis with at least 54 genes dysregulated. Mammalian phenotype ontology analysis found 4.818 affected phenotypes, including decreased cell proliferation (58 genes), increased apoptosis (48 genes) and abnormal cell cycle (41 genes). Key-genes of endometrial proliferation at the window of implantation were significantly downregulated, including: CD44, PGR; IGFs, FGFs, and HAND2. Moreover, at least 25% decreased hESCs proliferation was verified in vitro after transfection. These negative effects of miR–371a in cell cycle could disturb implantation of the incoming embryo, since intense cellular proliferation is necessary for establishment of the implantation site. Limitations, reasons for caution These results are limited to miR–371a actions on human endometrial stromal cells. It is likely that miRNAs, cytokines, growth factors, and other molecules form complex regulatory networks that control uterine receptivity and embryo implantation. Wider implications of the findings: MiRNAs are important mediators of the embryo-maternal interactome. Their actions are likely involved in implantation-related processes including inter-cellular communication, decidualization, adhesion, invasion, and establishment of the implantation site. Embryo-secreted miRNAs change the transcriptome of the neighboring endometrial cells with effects on implantation-related pathways, serving thus secretory functions. Trial registration number N/A


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Logan T. Keding ◽  
Lindsey N. Block ◽  
Gregory J. Wiepz ◽  
Michelle R. Koenig ◽  
...  

Abstract Nonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSCs) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first and second trimester placental villous cytotrophoblasts followed by culture in TSC medium to maintain cellular proliferation. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was > 4000-fold higher in ST culture media compared to TSC media. The secretion of chorionic gonadotropin by TSC-derived ST reflects a reprogramming of macaque TSCs to an earlier pregnancy phenotype. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and the macaque placental nonclassical MHC class I molecule, Mamu-AG. Extravillous trophoblasts (EVTs) were derived that express macaque EVT markers Mamu-AG and CD56, and also secrete high levels of MMP2. Our analyses of macaque TSCs suggests that these cells represent a proliferative, self-renewing population capable of differentiating to STs and EVTs in vitro thereby establishing an experimental model of primate placentation.


Sign in / Sign up

Export Citation Format

Share Document