scholarly journals Dynamic Strength Training Improves Insulin Sensitivity without Altering Plasma Levels and Gene Expression of Adipokines in Subcutaneous Adipose Tissue in Obese Men

2006 ◽  
Vol 91 (12) ◽  
pp. 5107-5112 ◽  
Author(s):  
E. Klimcakova ◽  
J. Polak ◽  
C. Moro ◽  
J. Hejnova ◽  
M. Majercik ◽  
...  

Abstract Context: Obesity is characterized by a low-grade inflammatory state, which could play a role in insulin resistance. Dynamic strength training improves insulin sensitivity. Objective: The objective of this study was to investigate, in obese subjects, whether the insulin sensitizing effect of dynamic strength training is associated with changes in plasma levels and gene expression of adipokines potentially involved in the development of insulin resistance. Design: Twelve obese male subjects were investigated before and at the end of 3 months of dynamic strength training. Insulin sensitivity was evaluated using euglycemic-hyperinsulinemic clamp. Blood samples and needle biopsy samples of sc abdominal adipose tissue were obtained. The plasma levels and adipose tissue mRNA levels of adiponectin, leptin, IL-1β, IL-6, and TNF-α were determined. Results: The training induced an increase in the whole-body glucose disposal rate by 24% (P = 0.04). The body weight was not altered during the training. Plasma levels of leptin decreased during the training (16.6 ± 6.3 vs. 13.1 ± 5.7 ng/ml) by 21% (P < 0.02), whereas no change in plasma levels of other adipokines and C-reactive protein was observed. Gene expression of the investigated adipokines was not changed in sc adipose tissue during the training. Conclusions: In obese subjects, the dynamic strength training resulted in an improvement of whole-body insulin sensitivity. The increase in insulin sensitivity was not associated with training-induced modifications of plasma levels or adipose tissue gene expression of adipokines supposedly involved in the development of insulin resistance.

2006 ◽  
Vol 291 (1) ◽  
pp. E108-E114 ◽  
Author(s):  
Rikke Krogh-Madsen ◽  
Peter Plomgaard ◽  
Kirsten Møller ◽  
Bettina Mittendorfer ◽  
Bente K. Pedersen

Inflammation is associated with insulin resistance, and both tumor necrosis factor (TNF)-α and interleukin (IL)-6 may affect glucose uptake. TNF induces insulin resistance, whereas the role of IL-6 is controversial. High plasma levels of IL-18 are associated with insulin resistance in epidemiological studies. We investigated the effects of TNF and IL-6 on IL-18 gene expression in skeletal muscle and adipose tissue. Nine human volunteers underwent three consecutive interventions, receiving an infusion of recombinant human (rh)IL-6, rhTNF, and saline. Insulin sensitivity was assessed by measurement of whole body glucose uptake with the stable isotope tracer method during a euglycemic hyperinsulinemic clamp (20 mU·min−1·kg−1), which was initiated 1 h after the IL-6-TNF-saline infusion. Cytokine responses were measured in plasma, muscle, and fat biopsies. Plasma concentrations of TNF and IL-6 increased 10- and 38-fold, respectively, during the cytokine infusions. Whole body insulin-mediated glucose uptake was significantly reduced during TNF infusion but remained unchanged during IL-6 infusion. TNF induced IL-18 gene expression in muscle tissue, but not in adipose tissue, whereas IL-6 infusion had no effect on IL-18 gene expression in either tissue. We conclude that TNF-induced insulin resistance of whole body glucose uptake is associated with increased IL-18 gene expression in muscle tissue, indicating that TNF and IL-18 interact, and both may have important regulatory roles in the pathogenesis of insulin resistance.


2020 ◽  
Author(s):  
Oana P. Zaharia ◽  
Klaus Strassburger ◽  
Birgit Knebel ◽  
Yuliya Kupriyanova ◽  
Yanislava Karusheva ◽  
...  

<a><b>Objective</b></a>: The rs738409(G) single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (<i>PNPLA3</i>) gene associates with increased risk and progression of nonalcoholic fatty liver disease (NAFLD). As the recently-described severe insulin-resistant diabetes (SIRD) cluster specifically relates to NAFLD, this study examined whether this SNP differently associates with hepatic lipid content (HCL) and insulin sensitivity in recent-onset diabetes mellitus. <p><b>Research Design and Methods</b>: A total of 917 participants of the German Diabetes Study underwent genotyping, hyperinsulinemic-euglycemic clamps with stable isotopic tracer dilution and magnetic resonance spectroscopy. </p> <p><b>Results:</b> The G allele associated positively with HCL (β=0.36, p<0.01), independent of age, sex and BMI across the whole cohort, but not in the individual clusters. SIRD exhibited lowest whole-body insulin sensitivity compared to severe insulin-deficient (SIDD), moderate obesity-related (MOD), moderate age-related (MARD) and severe autoimmune diabetes clusters (SAID; all p<0.001). Interestingly, SIRD presented with higher prevalence of the rs738409(G) SNP compared to other clusters and the glucose-tolerant control group (p<0.05). HCL was higher in SIRD [13.6 (5.8;19.1)%] compared to MOD [6.4 (2.1;12.4)%, p<0.05], MARD [3.0 (1.0;7.9)%, p<0.001], SAID [0.4 (0.0;1.5)%, p<0.001] and the glucose tolerant group [0.9 (0.4;4.9)%, p<0.001]. Although the <i>PNPLA3</i> polymorphism did not directly associate with whole-body insulin sensitivity in SIRD, the G allele carriers had higher circulating free fatty acid concentrations and greater adipose-tissue insulin resistance compared to non-carriers (both p<0.001).</p> <b>Conclusions:</b> Members of the severe insulin resistant diabetes cluster are more frequently carriers of the rs738409(G) variant. The SNP-associated adipose-tissue insulin resistance and excessive lipolysis may contribute to their NAFLD.


2020 ◽  
Author(s):  
Ada Admin ◽  
Neeraj K. Sharma ◽  
Mary E. Comeau ◽  
Dennis Montoya ◽  
Matteo Pellegrini ◽  
...  

Decline in insulin sensitivity due to dysfunction of adipose tissue (AT) is one of the earliest pathogenic events in Type 2 Diabetes. We hypothesize that differential DNA methylation (DNAm) controls insulin sensitivity and obesity by modulating transcript expression in AT. Integrating AT DNAm profiles with transcript profile data measured in a cohort of 230 African Americans from AAGMEx cohort, we performed <i>cis</i>-expression quantitative trait methylation (<i>cis</i>-eQTM) analysis to identify epigenetic regulatory loci for glucometabolic trait-associated transcripts. We identified significantly associated CpG-regions for 82 transcripts (FDR-P<0.05). The strongest eQTM locus was observed for the proopiomelanocortin (<i>POMC</i>; r= -0.632, P= 4.70X10<sup>-27</sup>) gene. Epigenome-wide association studies (EWAS) further identified 155, 46, and 168 CpG regions associated (FDR-P <0.05) with Matsuda index, S<sub>I</sub> and BMI, respectively. Intersection of EWAS, transcript level to trait association, and eQTM results, followed by causal inference test identified significant eQTM loci for 23 genes that were also associated with Matsuda index, S<sub>I </sub>and/or BMI in EWAS. These associated genes include <i>FERMT3</i>, <i>ITGAM</i>, <i>ITGAX</i>, and <i>POMC</i>. In summary, applying an integrative multi-omics approach, our study provides evidence for DNAm-mediated regulation of gene expression at both previously identified and novel loci for many key AT transcripts influencing insulin resistance and obesity.


2009 ◽  
Vol 201 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Camilla Alexanderson ◽  
Elias Eriksson ◽  
Elisabet Stener-Victorin ◽  
Malin Lönn ◽  
Agneta Holmäng

Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor β1 (Tgfβ1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFβ1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor δ (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfβ1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood.


2007 ◽  
Vol 157 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Jens M Bruun ◽  
Bente Stallknecht ◽  
Jørn W Helge ◽  
Bjørn Richelsen

Objective: Interleukin (IL)-18 is associated with obesity, insulin resistance, and cardiovascular disease. The present study compared 1) IL-18 in adipocytes versus stromal vascular (SV) cells, 2) IL-18 in plasma and adipose tissue (AT) in obese versus lean subjects, and 3) IL-18 in plasma, AT, and skeletal muscle (SM) in obese subjects after weight loss. Subjects and methods: At baseline, plasma and AT IL-18 in 23 obese subjects were compared with that in 12 lean subjects. The obese subjects were submitted to a 15-week life-style intervention (hypocaloric diet and daily exercise) after which plasma samples, AT, and SM biopsies were obtained. Analyses were performed by ELISA and RT-PCR respectively. Results: IL-18 expression in isolated adipocytes was ~2% of that in SV cells. Plasma IL-18 was higher in obese subjects (P < 0.001) and associated with insulin resistance (HOMA; P < 0.001). AT expression of IL-18, CD14, and CD68 was higher in obese (P < 0.01). The intervention reduced body weight (P < 0.001), plasma IL-18 (P < 0.001), and increased insulin sensitivity (HOMA; P < 0.05). AT and SM expression of IL-18 remained unchanged after the intervention. Changes in plasma IL-18 were associated with changes in insulin sensitivity (P < 0.05) but not with BMI or AT expression of IL-18. Conclusion: Plasma IL-18 is associated with changes in insulin resistance and reduced after weight loss. AT expression of IL-18 is increased in obesity but not affected by weight loss, indicating that changes in plasma IL-18 are related to insulin resistance rather than changes in obesity per se.


2017 ◽  
Vol 102 (8) ◽  
pp. 3040-3049 ◽  
Author(s):  
Natalia Matulewicz ◽  
Magdalena Stefanowicz ◽  
Agnieszka Nikołajuk ◽  
Monika Karczewska-Kupczewska

Abstract Context In obesity, adipose tissue (AT) undergoes dynamic remodeling, including an alternation in adipogenesis, AT-resident cell content, angiogenesis, and turnover of extracellular matrix (ECM) components. Studies of AT in humans have been carried out mostly in people with severe metabolic abnormalities, like type 2 diabetes or morbid obesity. Objective The purpose of this study was to investigate subcutaneous AT gene expression of markers of adipogenesis, ECM remodeling, and inflammation in young, healthy, overweight or obese subjects. Design The study group comprised 83 normal-weight, 48 overweight, and 19 obese subjects. Euglycemic hyperinsulinemic clamp, biopsy of subcutaneous AT, and isolation of peripheral blood mononuclear cells (PBMCs) were performed. Gene expression was measured with real-time polymerase chain reaction. Results Overweight/obese subjects had lower AT expression of markers of adipogenesis, insulin signaling, and angiogenesis; higher expression of markers of ECM remodeling; altered expression of genes of the nuclear factor-κ-B (NFκB), but not c-Jun NH2-terminal kinase, pathway; and higher expression of macrophage markers but not markers of other immune cells. In multiple regression analysis, the expression of CEBPA, ADIPOQ, IRS1, IRS2, SLC2A4, and MMP9 was associated with insulin sensitivity independently of body mass index. No differences were found in inflammatory-gene PBMC expression. Conclusion Overweight/obesity is associated with altered expression of genes of adipogenesis, insulin signaling, ECM remodeling, and inflammation. NFκB seems to be the earliest inflammatory pathway altered at the transcriptional level in AT. Macrophages seem to be the first immune cells to infiltrate AT. Adipogenesis and ECM remodeling are the initial processes in AT that are independently associated with insulin sensitivity.


2010 ◽  
Vol 95 (6) ◽  
pp. 2993-3001 ◽  
Author(s):  
Resat Unal ◽  
Aiwei Yao-Borengasser ◽  
Vijayalakshmi Varma ◽  
Neda Rasouli ◽  
Craig Labbate ◽  
...  

Abstract Context: The study investigated the regulation of matrix metalloproteinases (MMP)-9 in obesity-associated insulin resistance in humans. Objectives: The objectives of the investigation were to study MMP-9 regulation by insulin resistance and pioglitazone treatment in impaired glucose tolerant subjects using adipose tissue biopsies and study the mechanism of MMP-9 regulation by pioglitazone in adipocyte cultures. Research Design: 86 nondiabetic, weight-stable subjects between 21 and 66 yr of age were recruited in a university hospital research center setting. All subjects underwent a sc adipose tissue incisional biopsy from the lower abdominal wall and insulin sensitivity testing using a frequently sampled iv glucose tolerance test. Impaired glucose-tolerant subjects were randomized to receive metformin or pioglitazone for 10 wk. To study the mechanism of MMP-9 regulation in adipocytes, cells were treated with pioglitazone or protein kinase Cα antisense oligomers, and MMP-9 levels were examined. Results: There was a positive correlation between MMP-9 and body mass index (r = 0.40, P &lt; 0.01) and negative correlation between MMP-9 and insulin sensitivity (r = −0.46, P &lt; 0.001). The improvement in insulin sensitivity from pioglitazone resulted in a 52 ± 0.2% reduction in MMP-9 mRNA. Fractionation of adipose tissue indicated that MMP-9 was mostly in the stromal vascular fraction. Pioglitazone also decreased MMP-9 in 3T3-F442A adipocytes and THP1 macrophages. Coculture of adipocytes with macrophages augmented MMP-9 expression in adipocytes and pioglitazone decreased MMP-9 in both adipocytes and macrophages. Conclusion: These data indicate that MMP-9 is elevated in insulin resistance and is reduced by pioglitazone.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1222-P
Author(s):  
MICHAEL W. SCHLEH ◽  
BENJAMIN J. RYAN ◽  
CHEEHOON AHN ◽  
ALISON LUDZKI ◽  
PALLAVI VARSHNEY ◽  
...  

2011 ◽  
Vol 43 (15) ◽  
pp. 942-949 ◽  
Author(s):  
Evert M. van Schothorst ◽  
Annelies Bunschoten ◽  
Eline Verlinde ◽  
Patrick Schrauwen ◽  
Jaap Keijer

A low vs. high glycemic index of a high-fat (HF) diet (LGI and HGI, respectively) significantly retarded adverse health effects in adult male C57BL/6J mice, as shown recently (Van Schothorst EM, Bunschoten A, Schrauwen P, Mensink RP, Keijer J. FASEB J 23: 1092–1101, 2009). The LGI diet enhanced whole body insulin sensitivity and repressed HF diet-induced body and white adipose tissue (WAT) weight gain, resulting in significantly reduced serum leptin and resistin levels and increased adiponectin levels. We questioned how WAT is modulated and characterized the molecular mechanisms underlying the glycemic index-mediated effects using whole genome microarrays. This showed that the LGI diet mainly exerts its beneficial effects via substrate metabolism, especially fatty acid metabolism. In addition, cell adhesion and cytoskeleton remodeling showed reduced expression, in line with lower WAT mass. An important transcription factor showing enhanced expression is PPAR-γ. Furthermore, serum levels of triglycerides, total cholesterol, and HDL- and LDL-cholesterol were all significantly reduced by LGI diet, and simultaneously muscle insulin sensitivity was significantly increased as analyzed by protein kinase B/Akt phosphorylation. Cumulatively, even though these mice were fed an HF diet, the LGI diet induced significantly favorable changes in metabolism in WAT. These effects suggest a partial overlap with pharmacological approaches by thiazolidinediones to treat insulin resistance and statins for hypercholesterolemia. It is therefore tempting to speculate that such a dietary approach might beneficially support pharmacological treatment of insulin resistance or hypercholesterolemia in humans.


Sign in / Sign up

Export Citation Format

Share Document