scholarly journals SAT-290 Food Restriction Effects on the Hypothalamus-Pituitary-Gonadal Axis

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Naira Silva Mansano ◽  
Tabata Mariz Bohlen ◽  
Renata Frazao

Abstract It is well known that nutritional status affects the reproduction, since an adequate amount of energy is necessary for puberty onset and fertility. However, the neural mechanisms by which energy homeostasis affects reproduction is not completely elucidated. To determine if acute or chronic food restriction (FR) are able to modulate the estrous cycle, adult female mice were used in the experiments. The estrous cycle was evaluated by daily observation of vaginal smear. To determine the effects of an acute FR protocol on estrous cycle, females were individualized and kept on ad libitum diet (control, n=17) or fasted for 24 hours (n= 21). A subgroup of animals was euthanized shortly after the 24-hours test to collect hypothalamus and determinate Kiss1 mRNA levels, while another group of mice were regrouped and fed ad libitum. To determine the effects of a chronic FR protocol on estrous cycle, control mice were individualized and maintained with 100% of daily food content (average of 5 g per day, n = 6), or submitted to 60% of FR (n= 12). Animals were fed ad libitum after test. As expected, mice fasted for 24-hours exhibited a significant weight loss (control: 21.7 g ± 0.5 vs 21.6 ± 0.5 g; fasted: 22.7g ± 0.5 vs 18.7g ± 0.4, P=0.0001). This effect was followed by a significant reduction of hypothalamic Kiss1 mRNA expression (control: 1.0 ± 0.2; fasted: 0.3 ± 0.05, P=0.04, n=4/4 per group). Surprisingly, even under lower Kiss1 mRNA levels, 24-hours fasting induced no changes on estrous cycle. On the other hand, chronic FR induced a gradual weight loss (body weight at the 5th day of FR, control: 21.5g ± 0.2; FR: 17.3g ± 0.7, P=0.0002). The chronic FR was follow by the disruption of estrous cyclicity. While control mice exhibited a regular pattern of cyclicity during the period of evaluation, only leukocytes were identified in the vaginal smear of mice submitted to 60% of FR, even though they had a normal cycling pattern before the test. Therefore, by comparing 30 days of estrous cycle evaluation, including the period before chronic FR, while control mice exhibited cornified cells in the vaginal smear 58.5 ± 4.9% of days, female mice submitted to FR exhibited cornified cells in 38.3 ± 3.8% of days (P= 0.0068). Approximately 3-4 days after the end of the chronic FR females returned to exhibit estrous cyclicity, however the length of the estrous cycle was prolonged compared to control group. Our data suggest that chronic nutritional status variations are required to disrupt the hypothalamus-pituitary-gonadal axis and therefore the estrous cyclicity.

2010 ◽  
Vol 299 (5) ◽  
pp. G1023-G1029 ◽  
Author(s):  
Darran N. Tosh ◽  
Qi Fu ◽  
Christopher W. Callaway ◽  
Robert A. McKnight ◽  
Isabella C. McMillen ◽  
...  

Maternal food restriction (FR) during pregnancy results in intrauterine growth-restricted (IUGR) offspring that show rapid catch-up growth and develop metabolic syndrome and adult obesity. However, continued nutrient restriction during nursing delays catch-up growth and prevents development of obesity. Epigenetic regulation of IGF1, which modulates growth and is synthesized and secreted by the liver, may play a role in the development of these morbidities. Control (AdLib) pregnant rats received ad libitum food through gestation and lactation, and FR dams were exposed to 50% food restriction from days 10 to 21. FR pups were nursed by either ad libitum-fed control dams (FR/AdLib) or FR dams (FR/FR). All pups were weaned to ad libitum feed. Maternal FR resulted in IUGR newborns with significantly lower liver weight and, with the use of chromatin immunoprecipitation, decreased dimethylation at H3K4 in the IGF1 region was observed. Obese adult FR/AdLib males had decreased dimethylation and increased trimethylation of H3K4 in the IGF1 region. This corresponded to an increase in mRNA expression of IGF1-A (134 ± 5%), IGF1-B (165 ± 6%), IGF1 exon 1 (149 ± 6%), and IGF1 exon 2 (146 ± 7%) in the FR/AdLib compared with the AdLib/AdLib control group. In contrast, nonobese FR/FR had significantly higher IGF1-B mRNA levels (147 ± 19%) than controls with no difference in IGF1-A, exon 1 or exon 2. Modulation of the rate of IUGR newborn catch-up growth may thus protect against IGF1 epigenetic modifications and, consequently, obesity and associated metabolic abnormalities.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5069-5077 ◽  
Author(s):  
Alexander S. Kauffman ◽  
Karolina Bojkowska ◽  
Aileen Wills ◽  
Emilie F. Rissman

GnRH-II is the most evolutionarily conserved member of the GnRH peptide family. In mammals, GnRH-II has been shown to regulate reproductive and feeding behaviors. In female musk shrews, GnRH-II treatment increases mating behaviors and decreases food intake. Although GnRH-II-containing neurons are known to reside in the midbrain, the neural sites of GnRH-II action are undetermined, as is the degree to which GnRH-II is regulated by energy availability. To determine whether GnRH-II function is affected by changes in food intake, we analyzed the levels of GnRH-II mRNA in the midbrain and GnRH-II protein in numerous target regions. Adult musk shrews were ad libitum fed, food restricted, or food restricted and refed for varying durations. Compared with ad libitum levels, food restriction decreased, and 90 min of refeeding reinstated, GnRH-II mRNA levels in midbrain and GnRH-II peptide in several target areas including the medial habenula and ventromedial nucleus. Refeeding for 90 min also reinstated female sexual behavior in underfed shrews. In male shrews, abundant GnRH-II peptide was present in all sites assayed, including the preoptic area, a region with only low GnRH-II in females. In contrast to females, food restriction did not affect GnRH-II protein in male brains or inhibit their mating behavior. Our results further define the relationship between GnRH-II, energy balance, and reproduction, and suggest that food restriction may inhibit female reproduction by reducing GnRH-II output to several brain nuclei. We postulate that this highly conserved neuropeptide functions similarly in other mammals, including humans, to fine-tune reproductive efforts with periods of sufficient energy resources.


Endocrinology ◽  
2013 ◽  
Vol 154 (12) ◽  
pp. 4503-4511 ◽  
Author(s):  
Niels-Erik Viby ◽  
Marie S. Isidor ◽  
Katrine B. Buggeskov ◽  
Steen S. Poulsen ◽  
Jacob B. Hansen ◽  
...  

The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P < .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P < .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.


1995 ◽  
Vol 133 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Manuela Rodriguez ◽  
Felipe Rodriguez ◽  
Trinidad Jolin ◽  
Pilar Santisteban

Rodriguez M, Rodriguez F, Jolin T, Santisteban P. Comparative effects of food restriction, fasting, diabetes and thyroidectomy on growth hormone and thyrotropin gene expression in the rat pituitary. Eur J Endocrinol 1995;133:110–6. ISSN 0804–4643 To examine the molecular basis for the decreased pituitary growth hormone (GH) and thyrotropin (TSH) content during restricted feeding, fasting and diabetes, we measured steady-state levels of mRNA for TSH-α TSH-β and GH in the pituitary from normal rats either fed ad libitum (C), limited to 75%, 50% and 25% (FR75, FR50, FR25, respectively) of ad libitum intake, or deprived of food for 2 and 4 days (F2 and F4, respectively), and also in streptozotocin-diabetic (D) and D insulin-treated animals. The results from these experimental groups were compared with those in thyroidectomized (Tx) rats. Pituitary mRNA was quantified by Northern blot hybridization with cDNA probes specific for rat TSH-α, TSH-β and GH. Although changes in the pituitary GH mRNA during restricted feeding, fasting and diabetes were similar qualitatively to those induced by hypothyroidism, GH mRNA levels in Tx rats (> 10% of C values) were less than in the other experimental groups (p < 0.001). Pituitaries from FR50, FR25 and D rats also contained less GH mRNA than F2 and F4 animals (p < 0.05). Thyroidectomy resulted in a marked increase in both TSH-β and TSH-α mRNAs, the changes in TSH-β mRNA being greater than those in TSH-α mRNA. In contrast, FR50, FR2 5, F2, F4 and D rats exhibited a decrease in pituitary TSH-β mRNA (60%, 50%, 35%, 36% and 33%, respectively, of C values; p < 0.01–0.05) and in TSH-α mRNA levels (81%, 64%, 46%, 43% and 36%, respectively, of normal values; p < 0.02–0.05), TSH-β mRNA showing the greater changes. However, pituitaries from F2, F4 and D rats contained less TSH-β and TSH-α mRNA levels than FR50 and FR25 animals (p < 0.05). Insulin therapy partially restored the changes in mRNA for GH, TSH-β and TSH-α observed in D rats. In addition, the pituitary nuclear triiodothyronine in Tx, FR50, FR25, F2, F4 and D rats was reduced to 19%, 73%, 52%, 76%, 51% and 41%, respectively of C values (p < 0.05–0.001). These data suggest that GH, TSH-α and TSH-β gene expression are modulated by metabolic and/or endocrine changes accompanying restricted feeding, fasting and diabetes. P Santisteban, Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, 28029 Madrid, Spain


2017 ◽  
Vol 35 (1) ◽  
pp. 71
Author(s):  
Siska Adelya Ramadhani ◽  
Iman Supriatna ◽  
Ni Wayan Kurniani Karja ◽  
Adi Winarto

Gosipol is a substances contained in extracted cotton seed which is thought to have the antifertility ability therefore it is often used as a herbal contraceptive. The aim of this study were to assess the folliculogenesis in mice after administrated with cottonseed extract. 60 female mice strain DDY which was 14-15 weeks old and 30-35 g body weight were divided into five groups and given cottonseed extract each 0; 1,5; 2,1 and 2,7 g/kg BW for 5, 10, 15, 24, and 24 + 10 days (without cottonseed treatment). At the end of the treatment period, mice was euthanasia to observe follicular development histomorphology (each three mice of each treatment). Mice estrous status were evaluated based on the description of the vaginal smear cells with Giemsa staining. The results showedthat the number of developing follicles was low (P < 0.05) compared with control after 5 days cottonseed extract administration at dose 2,7 g/kg BW that were 23 ± 3,6. At dose 1,5 and 2,1 g/kg BW the number of follicles was low after 24 days that were 25 ± 10,4 and 27 ± 3,5. Recovery effects of follicle number after cottonseed extract administration for 24 days was the best at a dose of 1,5 g/kg BW. Prolonge of estrous cycle occured in mice which were administrated the cottonseed extract of at all dose treatment. In conclusion, although the decrease in the number of developing follicles and prolonge of estrous cycles occurred after cottonseed extract administration, but these effects are reversible after the administration ended.


2021 ◽  
Author(s):  
Yin-qiong Huang ◽  
Junping Wen ◽  
Gang Chen

Abstract Background: Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, affecting energy homeostasis and reproductive function. The hypothalamic Kisspeptin neurons might be a new important central target in stress affecting energy metabolism and reproductive function.The aim of this study is to investigate whether stress affected energy metabolism and reproductive function through the glucocorticoid receptor on Kisspeptin neurons in the hypothalamus. Methods: There were four groups, that were control group, chronic restraint stress group (stress group), Kisspeptin specific glucocorticoid receptor knock out group (KGRKO group) and KGRKO+stress group. Body weight, food intake, the estrous cycle of female mice, serum sex hormone levels, serum corticosterone and prolactin, Kisspeptin expression in the hypothalamus were measured. Results: The restraint stress group showed a significant weight loss compared with the control group. Compared with the restraint stress group, the KGRKO+restraint stress group had a reduced weight loss, suggesting that restraint stress might partially affect the energy metabolism through GR on Kisspeptin neurons. In terms of reproductive function, the restraint stress group and the KGRKO+restraint stress group showed missing pre-estrus period or prolonged estrous cycles. Serum LH and FSH in KGRKO + restraint stress group decreased significantly compared with KGRKO group. However, no significant difference in the level of serum testosterone was observed. After restraint stress, the levels of serum cortisol and prolactin in male and female mice were significantly higher than the control group, and the hypothalamus Kiss1 gene mRNA expression and Kisspeptin protein expression were significantly decreased. Conclusion: Chronic restraint stress induced weight loss in mice. Chronic restraint stress played a negative role in regulating reproductive function. The effects of chronic restraint stress on energy metabolism and reproduction were partially mediated by glucocorticoid receptor on Kisspeptin neurons in the hypothalamus.


1982 ◽  
Vol 99 (3) ◽  
pp. 641-649 ◽  
Author(s):  
B. V. Butler-Hogg ◽  
N. M. Tulloh

SUMMARYThe growth and feed intakes of Corriedale wether sheep when grown from 30 to 50 kg body weight by five different growth paths are described.Group A (control) grew continuously (fed ad libitum). After reaching ca; 40 kg body weight, group B and C animals lost 21% of their initial body weight over 9 and 18 weeks and at 122 and 63 g/day, respectively, and began realimentation at 30 kg body weight. Group D and E animals were ca. 50 kg body weight when weight loss was imposed and they lost body weight at similar rates (125 and 157 g/day) respectively. Animals in group D lost 34% of their initial body weight over 18 weeks and began realimentation at 30 kg body weight (the same as groups B and C). Group E animals lost 23% of their initial body weight over 9 weeks to begin realimentation at 35 kg body weight. Except during periods of weight loss, animals were fed ad libitum. Compensatory growth was observed in all groups which had lost weight, with early recovery growth rates 1·6–1·8 times higher than control sheep of the same weight.Rate of body-weight loss did not induce any significant differences in response to realimentation but results (groups B and C) suggest that the more rapid the loss, the more rapid will recovery be during realimentation. When sheep at different body weights lost the same proportion of their initial body weights, the heavier sheep (group E) attained final slaughter weight quicker than the lighter sheep (group B). When the proportion of body weight lost to reach a particular lower body weight was varied (groups B and D), the greater weight loss was associated with higher and more persistent growth rates during realimentation.After weight loss, ad libitum dry-matter intake was significantly lower during the first 10 kg of gain during realimentation in all treatment groups (B, C, D, E) than in control group A. There were no differences between treatment groups in recovery of dry-matter intake.Gross efficiency in all treatment groups was higher than in the control group A during the first 10 kg of recovery of body weight, but it then declined rapidly. This increase in gross efficiency was considered to be due to a combination of increased growth rates, reduced feed intakes and lower maintenance requirements. When the complete growth paths from 30 to 50 kg were considered, there were no significant differences in total feed consumed by the sheep following the five different growth paths.


2020 ◽  
Vol 64 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Isadora C Furigo ◽  
Pryscila D S Teixeira ◽  
Paula G F Quaresma ◽  
Naira S Mansano ◽  
Renata Frazão ◽  
...  

AgRP neurons are important players in the control of energy homeostasis and are responsive to several hormones. In addition, STAT5 signalling in the brain, which is activated by metabolic hormones and growth factors, modulates food intake, body fat and glucose homeostasis. Given that, and the absence of studies that describe STAT5 function in AgRP cells, the present study investigated the metabolic effects of Stat5a/b gene ablation in these neurons. We observed that STAT5 signalling in AgRP neurons regulates body fat in female mice. However, male and female STAT5-knockout mice did not exhibit altered food intake, energy expenditure or glucose homeostasis compared to control mice. The counter-regulatory response or glucoprivic hyperphagia induced by 2-deoxy-d-glucose treatment were also not affected by AgRP-specific STAT5 ablation. However, under 60% food restriction, AgRP STAT5-knockout mice had a blunted upregulation of hypothalamic Agrp mRNA expression and corticosterone serum levels compared to control mice, suggesting a possible role for STAT5 in AgRP neurons for neuroendocrine adaptations to food restriction. Interestingly, ad libitum fed knockout male mice had reduced Pomc and Ucp-1 mRNA expression compared to control group. Taken together, these results suggest that STAT5 signalling in AgRP neurons regulates body adiposity in female mice, as well as some neuroendocrine adaptations to food restriction.


2010 ◽  
Vol 80 (6) ◽  
pp. 386-393 ◽  
Author(s):  
François Abalan ◽  
Willy Mayo ◽  
Hervé Simon ◽  
Michel Le Moal

It has been firmly established that the longevity of 20- to 60 %-calorie-restricted rodents, with malnutrition (essential nutrients deficiency) being avoided, is increased when compared to ad libitum fed rodents. However, the effects on life span of severe dietary restriction (i. e. malnutrition), with limited weight loss, remained unknown. The purpose of this 4-year study was to investigate the effects on longevity of a severe form of dietary restriction, with limited and controlled weight loss. To this end, a group of male Long-Evans rats severely dietary restricted (SDR group), with a weight loss throughout the experiment <= 25 % of their weight before the onset of the experiment at 9 weeks of age, was compared to a control group of rats 30- to 40 %-calorie-restricted (C group). Our results show that a severe dietary restriction, excessive weight loss being prevented, paradoxically increased rat longevity by nearly 50 %. The life span increase observed in our SDR rats is in accordance with some other studies investigating the effects on longevity of partial essential nutrients deficiencies (tryptophan, methionine, and fat, for example).


Sign in / Sign up

Export Citation Format

Share Document