scholarly journals The Immune Microenvironment of Hashimoto’s Thyroiditis Regulates the Glycosylation Modification of IgG

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A845-A845
Author(s):  
Yedi Cao ◽  
Zhijing Song ◽  
Yan Gong ◽  
Keli Zhao ◽  
Xue Zhao ◽  
...  

Abstract Objectives: Elevation of anti-thyroglobulin antibodies that are primarily IgG isotype is a hallmark of Hashimoto’s thyroiditis (HT). As for IgG,it bears two conserved repertoire of N-linked glycans attached to its crystallizable fragment (Fc) at the 297 asparagine residue (Asn297). In our previous study, we found that serum TgAb IgG from HT patients exhibits higher glycosylation levels than those observed from healthy controls. Previous studies confirmed that imbalance of Th1/Th2 and Th17/Treg leading to altered immune microenvironment with elevation of certain cytokines was found in the thyroid tissue of HT, including IFN-γ, TNF-α, IL-21, IL-17A, IL-6, BAFF, APRIL. Thus, the aim of our study was to investigate the influence of the elevated cytokines on the differentiation process of B cells and the glycosylation levels of IgG. Methods: We formed a two-phase culture system in vitro to promote B cells to differentiate to antibody-secreting cells (ASCs). In the process of cell culture, B cells were co-cultured with cytokines as followed: IFN-γ, TNF-α, IL-21, IL-17A, IL-6, BAFF and APRIL. Flow cytometry was performed to identify the percentage of plasmablasts (CD38+CD27high) and plasma cells (CD20-CD138+). ELISA was used to measure the yield of IgG in culture supernatants. The glycosylation levels of secreted IgG under different stimulation conditions were detected by lectin microarray. Results: We found that IL-21, TNF-α and BAFF can significantly promote the differentiation of B cells into ASCs in vitro culture system, and augment the production of IgG to over 4-fold. In addition, cytokines affected the glycosylation modification profile of IgG diversely: 1) IL-21, IL-17A, TNF-α, BAFF significantly increased the glycosylation level of sialic acid of total IgG; 2) IFN-γ significantly increased the level of galactose; 3) IL-21, IL-17A, IFN-γ, BAFF, and APRIL significantly increased the level of mannose; 4) IL-6 significantly decreased the level of sialic acid, galactose and mannose; 5) IL-17A, IFN-γ, TNF-α, BAFF significantly increased the level of GalNAc that was a component of O-Glycan,which only exists in the hinge region of IgG3 subclass. Conclusions: The abnormally elevated cytokines in microenvironment participated in the regulation of B cell terminal differentiation process and glycosylation level of IgG, thereby involving in the pathogenesis of AITD.

2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1230
Author(s):  
Sumin Pyeon ◽  
Ok-Kyung Kim ◽  
Ho-Geun Yoon ◽  
Shintae Kim ◽  
Kyung-Chul Choi ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by immune hypersensitivity reaction. The cause of AD is unclear, but its symptoms have a negative effect on quality of life; various treatment methods to alleviate these symptoms are underway. In the present study, we aimed to evaluate in vitro antioxidant and anti-inflammatory effects of Rubus coreanus water extract (RCW) on AD. Total phenolic compounds and flavonoid content of RCW were 4242.40 ± 54.84 mg GAE/g RCE and 1010.99 ± 14.75 mg CE/g RCW, respectively. RCW reduced intracellular reactive oxygen species level and increased the action of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-stimulated HaCaT cells. Moreover, mRNA expression of the pro-inflammatory cytokines, including TNF-α, interleukin-1β, and interleukin-6, was downregulated by RCW in the TNF-α/IFN-γ-stimulated cells. The levels of inflammatory chemokines (thymus- and activation-regulated chemokine; eotaxin; macrophage-derived chemokine; regulated on activation, normal T-cell expressed and secreted; and granulocyte-macrophage colony-stimulating factor) and intercellular adhesion molecule-1 were decreased in the TNF-α/IFN-γ-stimulated HaCaT cells after RCW treatment. Additionally, the mRNA expression levels of filaggrin and involucrin, proteins that form the skin, were increased by RCW. Furthermore, RCW inhibited the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway in the TNF-α/IFN-γ-stimulated HaCaT cells. Collectively, the present investigation indicates that RCW is a potent substance that inhibits AD.


2005 ◽  
Vol 152 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Sebastiano Bruno Solerte ◽  
Sara Precerutti ◽  
Carmine Gazzaruso ◽  
Eleonora Locatelli ◽  
Mauro Zamboni ◽  
...  

Background: The study of the natural killer (NK) immune compartment could provide important findings to help in the understanding of some of the pathogenetic mechanisms related to autoimmune thyroid diseases (Graves’ disease (GD) and Hashimoto’s thyroiditis (HT)). Within this context, it was suggested that alterations in NK cell cytotoxicity (NKCC) and NK production of cytokines might occur in subjects with GD and HT, whereas the normalization of NK functions could potentially contribute to the prevention of the onset or the progression of both diseases. Objective: Due to the hypothesis of alterations in NK in autoimmune thyroid diseases, we were interested to evaluate NKCC in GD and HT patients and to modulate NK function and secretory activity with cytokines and dehydroepiandrosterone sulfate (DHEAS) in an attempt to normalize NK cell defect. Design: We studied 13 patients with recent onset Graves’ disease, 11 patients with Hashimoto’s thyroiditis at first diagnosis and 15 age-matched healthy subjects. Methods: NK cells were concentrated at a density of 7.75 × 106 cells/ml by negative immunomagnetic cell separation and validated by FACScan as CD16 + /CD56 + cells. NK cells were incubated with interleukin-2 (IL-2) and interferon-β (IFN-β) and co-incubated with DHEAS at different molar concentrations for measuring NKCC and the secretory pattern of tumor necrosis factor-α (TNF-α) from NK cells. Results: Lower spontaneous, IL-2- and IFN-β-modulated NKCC was demonstrated in GD and HT patients compared with healthy subjects (P < 0.001). A decrease in spontaneous and IL-2-modulated TNF-α release from NK cells was also found in both groups of patients (P < 0.001). The co-incubation of NK cells with IL-2/IFN-β + DHEAS at different molar concentrations (from 10−8 to 10−5 M/ml/NK cells) promptly normalized NKCC and TNF-α secretion in GD and HT patients. Conclusions: A functional defect of a subpopulation of NK immune cells, involving both NKCC and the secretory activity, was demonstrated in newly-diagnosed GD and HT patients. This defect can be reversed by a dose-dependent treatment with DHEAS. The impairment of NK cell activity in autoimmune thyroid diseases could potentially determine a critical expansion of T/B-cell immune compartments leading to the generation of autoantibodies and to the pathogenesis of thyroid autoimmunity.


2009 ◽  
Vol 78 (3) ◽  
pp. 1012-1021 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Rose B. Teles ◽  
Thais P. Amadeu ◽  
Danielle F. Moura ◽  
Leila Mendonça-Lima ◽  
...  

ABSTRACT Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-α. It was observed that IFN-γ, TNF-α, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-α, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.


2021 ◽  
Vol 12 (1) ◽  
pp. 16-26
Author(s):  
Kimberly To ◽  
Ruoqiong Cao ◽  
Aram Yegiazaryan ◽  
James Owens ◽  
Kayvan Sasaninia ◽  
...  

Abstract Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains a devastating infectious disease in the world. There has been a daunting increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. T2DM patients are three times more vulnerable to M. tb infection compared to healthy individuals. TB-T2DM coincidence is a challenge for global health control. Despite some progress in the research, M. tb still has unexplored characteristics in successfully evading host defenses. The lengthy duration of treatment, the emergence of multi-drug-resistant strains and extensive-drug-resistant strains of M. tb have made TB treatment very challenging. Previously, we have tested the antimycobacterial effects of everolimus within in vitro granulomas generated from immune cells derived from peripheral blood of healthy subjects. However, the effectiveness of everolimus treatment against mycobacterial infection in individuals with T2DM is unknown. Furthermore, the effectiveness of the combination of in vivo glutathione (GSH) supplementation in individuals with T2DM along with in vitro treatment of isolated immune cells with everolimus against mycobacterial infection has never been tested. Therefore, we postulated that liposomal glutathione (L-GSH) and everolimus would offer great hope for developing adjunctive therapy for mycobacterial infection. L-GSH or placebo was administered to T2DM individuals orally for three months. Study subjects’ blood was drawn pre- and post-L-GSH/or placebo supplementation, where Peripheral Blood Mononuclear Cells (PBMCs) were isolated from whole blood to conduct in vitro studies with everolimus. We found that in vitro treatment with everolimus, an mTOR (membrane target of rapamycin) inhibitor, significantly reduced intracellular M. bovis BCG infection alone and in conjunction with L-GSH supplementation. Furthermore, we found L-GSH supplementation coupled with in vitro everolimus treatment produced a greater effect in inhibiting the growth of intracellular Mycobacterium bovis BCG, than with the everolimus treatment alone. We also demonstrated the functions of L-GSH along with in vitro everolimus treatment in modulating the levels of cytokines such as IFN-γ, TNF-α, and IL-2 and IL-6, in favor of improving control of the mycobacterial infection. In summary, in vitro everolimus-treatment alone and in combination with oral L-GSH supplementation for three months in individuals with T2DM, was able to increase the levels of T-helper type 1 (Th1) cytokines IFN-γ, TNF-α, and IL-2 as well as enhance the abilities of granulomas from individuals with T2DM to improve control of a mycobacterial infection.


2021 ◽  
pp. 030098582110459
Author(s):  
Corrie Brown ◽  
Jian Zhang ◽  
Mary Pantin-Jackwood ◽  
Kiril Dimitrov ◽  
Helena Lage Ferreira ◽  
...  

Selected lymphoid and reproductive tissues were examined from groups of 3-week-old chickens and 62-week-old hens that were inoculated choanally and conjunctivally with 106 EID50 of a virulent Newcastle disease virus (NDV) isolate from the California 2018–2020 outbreak, and euthanized at 1, 2, and 3 days postinfection. In the 3-week-old chickens, immunohistochemistry for NDV and for T and B cell lymphocytes, as well as in situ hybridization for IL-1β, IL-6, IFN-γ, and TNF-α revealed extensive expression of IL-1β and IL-6 in lymphoid tissues, often coinciding with NDV antigen. IFN-γ was only expressed infrequently in the same lymphoid tissues, and TNF-α was rarely expressed. T-cell populations initially expanded but by day 3 their numbers were below control levels. B cells underwent a similar expansion but remained elevated in some tissues, notably spleen, cecal tonsils, and cloacal bursa. Cytokine expression in the 62-week-old hens was overall lower than in the 3-week-old birds, and there was more prolonged infiltration of both T and B cells in the older birds. The strong pro-inflammatory cytokine response in young chickens is proposed as the reason for more severe disease.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5011-5011
Author(s):  
Haiping He ◽  
Atsuko Takahashi ◽  
Yuki Yamamoto ◽  
Akiko Hori ◽  
Yuta Miharu ◽  
...  

Background: Mesenchymal stromal cells (MSC) are known to have the immunosuppressive ability and have been applied in clinic to treat acute graft-versus-host disease (GVHD), as one of severe complications after hematopoietic stem cells transplantation (HSCT) in Japan. However, MSC are activated to suppress the immune system only upon the stimulation of inflammatory cytokines and the clinical results of MSC therapies for acute GVHD are varied. It is ideal that MSC are primed to be activated and ready to suppress the immunity (=priming) before administration in vivo. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb - Tripterygium Wilfordii Hook F (TWHF). It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aim to use TPL as the activator for umbilical cord-derived MSC (UC-MSC) to entry stronger immunosuppressive status. Methods: The proliferation of UC-MSC with TPL at the indicated concentrations for different time of 24, 48, 72, and 96 hours. Cell counting kit-8(CCK-8) was added in the culture medium to detect cell toxicity and the absorbance was measured using microplate reader. Flow cytometry was used to identify the MSC surface markers expression. TPL-primed UC-MSC were once replaced with fresh medium and co-culture with mixed lymphocyte reaction (MLR) consisted with mononuclear cells (MNCs) stained with CFSE and irradiated allogenic dendritic cell line (PMDC05) in RPMI 1640 medium supplemented with 10 % FBS (complete medium). IDO-1, SOD1, and TGF-β gene expression in TPL-primed UC-MSC and UC-MSC induced by 10 ng/ml IFN-γ and/or 15 ng/ml TNF-α were evaluated by RT-PCR. PDL1 and PDL2 expression in TPL-primed UC-MSC and UC-MSC in response to IFN-γ and/or TNF-α were checked by Flowjo. Results: Exposure of TPL for UC-MSC for 72hour at the concentration above 0.1 μM resulted in the cell damage significantly. Therefore, we added TPL in UC-MSC at 0.01μM of TPL for up to 48 hours, then washed thourouphly for the following culture for experiments. To evaluate the influence of TPL on the surface markers of UC-MSC, we cultured UC-MSC for 4 hours in complete medium following culture with 0.01μM of TPL for 20 hours (TPL-primed UC-MSC). TPL-primed UC-MSC revealed positive for CD105, CD73, and CD90, negative for CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules as same as the non-primed UC-MSC. In MLR suppression by UC-MSC, the TPL-primed UC-MSC activity revealed stronger anti-proliferative effect on the CD4+ and CD8+ T cells activated by allogeneic DC than those of non-primed UC-MSC in MLR. Furthermore, the TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β in response to IFN-γ+/-TNF-α by RT-PCR and enhanced the expression of PD-L1 by FACS analysis. Discussion:In this study, we found the TPL-primed UC-MSC showed stronger antiproliferative potency on CD4+ and CD8+ T cells compared with non-primed UC-MSC. TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β stimulated by IFN-γ+/-TNF-α, although TPL alone did not induce these factors. Furthermore, we found that the PD1 ligand (PD-L1) was induced in TPL-primed UC-MSC, likely IFN-γ enhanced the PD-L1 expression, evaluated by flowcytometry. These results suggested that TPL-primed UC-MSC seemed more sensitive to be activated as the immunosuppressant. Here, we firstly report the new function of TPL to induce the upregulation of immunosuppressive effect, although the mechanisms of TPL inhibition to MSC need to be explore. Conclusively, TPL-primed UC-MSC might be applied for the immunosuppressive inducer of MSC. Figure Disclosures He: SASAGAWA Medical Scholarship: Research Funding; IMSUT Joint Research Project: Research Funding. Nagamura:AMED: Research Funding. Tojo:AMED: Research Funding; Torii Pharmaceutical: Research Funding. Nagamura-Inoue:AMED: Research Funding.


2021 ◽  
Vol 6 (2) ◽  
pp. 41-46
Author(s):  
V. I. Dubrovina ◽  
K. M. Korytov ◽  
A. B. Petyatestnikova ◽  
N. O. Kiseleva ◽  
V. V. Voitkova ◽  
...  

Background. Improving the methodology of immunological monitoring in natural foci of plague in the Russian Federation and adjacent territories to increase the effectiveness of epidemiological surveillance of plague is an urgent line of research. The lack of correlation between the production of specific antibodies to the capsular antigen (F1) ofthe plague microbe with other indicators of the state of cellular defense reactivity indicates the need to search for new informative and accessible markers for assessing anti-plague immunity.Objective: to evaluate possibility of using the complex preparation (F1 and cell membranes) evaluate the possibilities of using an artificial antigenic complex based on F1 and cell membranes (CM) of the plague microbe in antigen-specific tests in vitro in people vaccinated against plague.resu. The study involved 153 volunteers living in the territory enzootic for plague (the village of Khandagayty ofthe Ovyur kozhuun of the Tyva Republic and the village of Kosh-Agach of the Kosh-Agach district of the Altai Republic). The study included the determination of spontaneous and mitogen-induced production of cytokines (IFN-γ, IL-4, TNF-α) by blood cells, titers of specific IgG antibodies to the capsular antigen F1 of the plague microbe and concentrations ofthe main classes of immunoglobulins (IgM, IgG, IgA and IgE) in blood serum, as well as immunophenotyping of blood lymphocytes (CD3, CD4, CD8, CD16, CD19).Results. Comparative assessment of the level of cytokines (TNF-α, IFN-γ and IL-4) in spontaneous/induced F1+CM Y. pestis tests revealed a statistically significant increase in the production of cytokines TNF-α and IFN-γ in the antigeninduced tests compared with spontaneous (p < 0.01).Conclusion. Thus, the effectiveness of the use of artificial antigenic complex based on F1 and cell membranes ofthe plague microbe has been shown to assess the production of cytokines in antigen-specific cell tests in vitro, which justifies the need for further research. 


Sign in / Sign up

Export Citation Format

Share Document