Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms

Development ◽  
1998 ◽  
Vol 125 (11) ◽  
pp. 2149-2158 ◽  
Author(s):  
J.S. Britton ◽  
B.A. Edgar

In newly hatched Drosophila larvae, quiescent cells reenter the cell cycle in response to dietary amino acids. To understand this process, we varied larval nutrition and monitored effects on cell cycle initiation and maintenance in the mitotic neuroblasts and imaginal disc cells, as well as the endoreplicating cells in other larval tissues. After cell cycle activation, mitotic and endoreplicating cells respond differently to the withdrawal of nutrition: mitotic cells continue to proliferate in a nutrition-independent manner, while most endoreplicating cells reenter a quiescent state. We also show that ectopic expression of Drosophila Cyclin E or the E2F transcription factor can drive quiescent endoreplicating cells, but not quiescent imaginal neuroblasts, into S-phase. Conversely, we demonstrate that quiescent imaginal neuroblasts, but not quiescent endoreplicating cells, can be induced to enter the cell cycle when co-cultured with larval fat body in vitro. These results demonstrate a fundamental difference in the control of cell cycle activation and maintenance in these two cell types, and imply the existence of a novel mitogen generated by the larval fat body in response to nutrition.

2003 ◽  
Vol 23 (24) ◽  
pp. 9375-9388 ◽  
Author(s):  
Melanie J. McConnell ◽  
Nathalie Chevallier ◽  
Windy Berkofsky-Fessler ◽  
Jena M. Giltnane ◽  
Rupal B. Malani ◽  
...  

ABSTRACT The transcriptional repressor PLZF was identified by its translocation with retinoic acid receptor alpha in t(11;17) acute promyelocytic leukemia (APL). Ectopic expression of PLZF leads to cell cycle arrest and growth suppression, while disruption of normal PLZF function is implicated in the development of APL. To clarify the function of PLZF in cell growth and survival, we used an inducible PLZF cell line in a microarray analysis to identify the target genes repressed by PLZF. One prominent gene identified was c-myc. The array analysis demonstrated that repression of c-myc by PLZF led to a reduction in c-myc-activated transcripts and an increase in c-myc-repressed transcripts. Regulation of c-myc by PLZF was shown to be both direct and reversible. An interaction between PLZF and the c-myc promoter could be detected both in vitro and in vivo. PLZF repressed the wild-type c-myc promoter in a reporter assay, dependent on the integrity of the binding site identified in vitro. PLZF binding in vivo was coincident with a decrease in RNA polymerase occupation of the c-myc promoter, indicating that repression occurred via a reduction in the initiation of transcription. Finally, expression of c-myc reversed the cell cycle arrest induced by PLZF. These data suggest that PLZF expression maintains a cell in a quiescent state by repressing c-myc expression and preventing cell cycle progression. Loss of this repression through the translocation that occurs in t(11;17) would have serious consequences for cell growth control.


1995 ◽  
Vol 15 (1) ◽  
pp. 552-560 ◽  
Author(s):  
M Hattori ◽  
N Tsukamoto ◽  
M S Nur-e-Kamal ◽  
B Rubinfeld ◽  
K Iwai ◽  
...  

We have cloned a novel cDNA (Spa-1) which is little expressed in the quiescent state but induced in the interleukin 2-stimulated cycling state of an interleukin 2-responsive murine lymphoid cell line by differential hybridization. Spa-1 mRNA (3.5 kb) was induced in normal lymphocytes following various types of mitogenic stimulation. In normal organs it is preferentially expressed in both fetal and adult lymphohematopoietic tissues. A Spa-1-encoded protein of 68 kDa is localized mostly in the nucleus. Its N-terminal domain is highly homologous to a human Rap1 GTPase-activating protein (GAP), and a fusion protein of this domain (SpanN) indeed exhibited GAP activity for Rap1/Rsr1 but not for Ras or Rho in vitro. Unlike the human Rap1 GAP, however, SpanN also exhibited GAP activity for Ran, so far the only known Ras-related GTPase in the nucleus. In the presence of serum, stable Spa-1 cDNA transfectants of NIH 3T3 cells (NIH/Spa-1) hardly overexpressed Spa-1 (p68), and they grew as normally as did the parental cells. When NIH/Spa-1 cells were serum starved to be arrested in the G1/G0 phase of the cell cycle, however, they, unlike the control cells, exhibited progressive Spa-1 p68 accumulation, and following the addition of serum they showed cell death resembling mitotic catastrophes of the S phase during cell cycle progression. The results indicate that the novel nuclear protein Spa-1, with a potentially active Ran GAP domain, severely hampers the mitogen-induced cell cycle progression when abnormally and/or prematurely expressed. Functions of the Spa-1 protein and its regulation are discussed in the context of its possible interaction with the Ran/RCC-1 system, which is involved in the coordinated nuclear functions, including cell division.


2018 ◽  
Vol 218 (2) ◽  
pp. 474-488 ◽  
Author(s):  
Tomoya Edzuka ◽  
Gohta Goshima

Kinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that Drosophila kinesin-8 (Klp67A) possesses both microtubule (MT) plus end–stabilizing and –destabilizing activity, in addition to kinesin-8's commonly observed MT plus end–directed motility and tubulin-binding activity in vitro. We further show that Klp67A is required for stable kinetochore–MT attachment during prometaphase in S2 cells. In the absence of Klp67A, abnormally long MTs interact in an “end-on” fashion with kinetochores at normal frequency. However, the interaction is unstable, and MTs frequently become detached. This phenotype is rescued by ectopic expression of the MT plus end–stabilizing factor CLASP, but not by artificial shortening of MTs. We show that human kinesin-8 (KIF18A) is also important to ensure proper MT attachment. Overall, these results suggest that the MT-stabilizing activity of kinesin-8 is critical for stable kinetochore–MT attachment.


2010 ◽  
Vol 298 (6) ◽  
pp. R1615-R1626 ◽  
Author(s):  
Neil I. Bower ◽  
Ian A. Johnston

The mRNA expression of myogenic regulatory factors, including myoD1 (myoblast determination factor) gene paralogs, and their regulation by amino acids and insulin-like growth factors were investigated in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon ( Salmo salar). The cell cycle and S phase were determined as 28.1 and 13.3 h, respectively, at 18°C. Expression of myoD1b and myoD1c peaked at 8 days of culture in the initial proliferation phase and then declined more than sixfold as cells differentiated and was correlated with PCNA (proliferating cell nuclear antigen) expression ( R = 0.88, P < 0.0001; R = 0.70, P < 0.0001). In contrast, myoD1a transcripts increased from 2 to 8 days and remained at elevated levels as myotubes were formed. mRNA levels of myoD1c were, on average, 3.1- and 5.7-fold higher than myoD1a and myoD1b, respectively. Depriving cells of amino acids and serum led to a rapid increase in pax7 and a decrease in myoD1c and PCNA expression, indicating a transition to a quiescent state. In contrast, amino acid replacement in starved cells produced significant increases in myoD1c (at 6 h), PCNA (at 12 h), and myoD1b (at 24 h) and decreases in pax7 expression as cells entered the cell cycle. Our results are consistent with temporally distinct patterns of myoD1c and myoD1b expression at the G1 and S/G2 phases of the cell cycle. Treatment of starved cells with insulin-like growth factor I or II did not alter expression of the myoD paralogs. It was concluded that, in vitro, amino acids alone are sufficient to stimulate expression of genes regulating myogenesis in myoblasts involving autocrine/paracrine pathways. The differential responses of myoD paralogs during myotube maturation and amino acid treatments suggest that myoD1b and myoD1c are primarily expressed in proliferating cells and myoD1a in differentiating cells, providing evidence for their subfunctionalization following whole genome and local duplications in the Atlantic salmon lineage.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


2007 ◽  
Vol 18 (3) ◽  
pp. 986-994 ◽  
Author(s):  
Nicoletta Filigheddu ◽  
Viola F. Gnocchi ◽  
Marco Coscia ◽  
Miriam Cappelli ◽  
Paolo E. Porporato ◽  
...  

Ghrelin is an acylated peptidyl gastric hormone acting on the pituitary and hypothalamus to stimulate appetite, adiposity, and growth hormone release, through activation of growth hormone secretagogue receptor (GHSR)-1a receptor. Moreover, ghrelin features several activities such as inhibition of apoptosis, regulation of differentiation, and stimulation or inhibition of proliferation of several cell types. Ghrelin acylation is absolutely required for both GHSR-1a binding and its central endocrine activities. However, the unacylated ghrelin form, des-acyl ghrelin, which does not bind GHSR-1a and is devoid of any endocrine activity, is far more abundant than ghrelin in plasma, and it shares with ghrelin some of its cellular activities. Inhere we show that both ghrelin and des-acyl ghrelin stimulate proliferating C2C12 skeletal myoblasts to differentiate and to fuse into multinucleated myotubes in vitro through activation of p38. Consistently, both ghrelin and des-acyl ghrelin inhibit C2C12 proliferation in growth medium. Moreover, the ectopic expression of ghrelin in C2C12 enhances differentiation and fusion of these myoblasts in differentiation medium. Finally, we show that C2C12 cells do not express GHSR-1a, but they do contain a common high-affinity binding site recognized by both acylated and des-acylated ghrelin, suggesting that the described activities on C2C12 are likely mediated by this novel, yet unidentified receptor for both ghrelin forms.


2000 ◽  
Vol 11 (6) ◽  
pp. 2117-2130 ◽  
Author(s):  
Xiaohong Zhang ◽  
Walker Wharton ◽  
Marcia Donovan ◽  
Domenico Coppola ◽  
Rhonda Croxton ◽  
...  

The cyclin/cyclin-dependent kinase (cdk) inhibitor p27kip1 is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27kip1 in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27kip1 on cell cycle traverse is determined by cell density. We found that ectopic expression of p27kip1blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27kip1 expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27kip1 but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27kip1-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures.


2007 ◽  
Vol 177 (4) ◽  
pp. 587-597 ◽  
Author(s):  
Fajian Hou ◽  
Chih-Wen Chu ◽  
Xiangduo Kong ◽  
Kyoko Yokomori ◽  
Hui Zou

Proper sister chromatid cohesion is critical for maintaining genetic stability. San is a putative acetyltransferase that is important for sister chromatid cohesion in Drosophila melanogaster, but not in budding yeast. We showed that San is critical for sister chromatid cohesion in HeLa cells, suggesting that this mechanism may be conserved in metazoans. Furthermore, although a small fraction of San interacts with the NatA complex, San appears to mediate cohesion independently. San exhibits acetyltransferase activity in vitro, and its activity is required for sister chromatid cohesion in vivo. In the absence of San, Sgo1 localizes correctly throughout the cell cycle. However, cohesin is no longer detected at the mitotic centromeres. Furthermore, San localizes to the cytoplasm in interphase cells; thus, it may not gain access to chromosomes until mitosis. Moreover, in San-depleted cells, further depletion of Plk1 rescues the cohesion along the chromosome arms, but not at the centromeres. Collectively, San may be specifically required for the maintenance of the centromeric cohesion in mitosis.


2020 ◽  
Author(s):  
Xiangdong Tian ◽  
Dongming Liu ◽  
Dejun Zhou ◽  
Lisha Qi ◽  
Zhiqiang Han ◽  
...  

Abstract Background: Reactivation of dormant tumor cells is a critical step in the recurrence of many cancers, including colorectal cancer (CRC). Polo-like kinases 4 (PLK4), a central regulator of the cell cycle and proliferation, is a validated oncogene in tumorigenesis. However, the roles of PLK4 in tumor cell dormancy and reactivation still need to be further explored.Methods: The expression level of PLK4 was determined by immunohistochemical staining, Western blotting (WB) and quantitative real-time PCR (qRT-PCR). PLK4-dependent clinicopathological risk factors and the prognosis of CRC were characterized with 122 clinical samples. The roles of PLK4 in tumor cell dormancy, cell cycle progression, proliferation and invasion were determined by molecular and cell biology methods in vitro and in vivo.Results: The expression of PLK4 was dramatically increased in CRCs and positively correlated with aggressive tumor behavior and clinicopathological risk factors. Downregulation of PLK4 expression contributed to restoring phenotypically aggressive tumor cells to a quiescent state, and this transformation was likely regulated by mesenchymal-to-epithelial transformation (MET) progression in vitro and in vivo.Conclusions: This study elucidates the mechanisms involving PLK4 depletion in the induction and maintenance of CRC dormancy, which are very important in terms of both clinical significance and application value.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3704-3704
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

The preservation of hematopoietic stem cell pool in bone marrow (BM) is crucial for sustained hematopoiesis in adults. Studies assessing adult hematopoietic stem cells functionality had been shown that for example loss of quiescence impairs hematopoietic stem cells maintenance. Although, miR-199b is frequently down-regulated in acute myeloid leukemia, its role in hematopoietic stem cells quiescence, self-renewal and differentiation is poorly understood. Our laboratory investigated the role of miR-199b in hematopoietic stem and progenitor cells (HSPCs) fate using miR-199b-5p global deletion mouse model. Characterization of miR-199b expression pattern among normal HSPC populations revealed that miR-199b is enriched in LT-HSCs and reduced upon myeloablative stress, suggesting its role in HSCs maintenance. Indeed, our results reveal that loss of miR-199b-5p results in imbalance between long-term hematopoietic stem cells (LT-HSCs), short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MMPs) pool. We found that during homeostasis, miR-199b-null HSCs have reduced capacity to maintain quiescent state and exhibit cell-cycle deregulation. Cell cycle analyses showed that attenuation of miR-199b controls HSCs pool, causing defects in G1-S transition of cell cycle, without significant changes in apoptosis. This might be due to increased differentiation of LT-HSCs into MPPs. Indeed, cell differentiation assay in vitro showed that FACS-sorted LT-HSCs (LineagenegSca1posc-Kitpos CD48neg CD150pos) lacking miR-199b have increased differentiation potential into MPP in the presence of early cytokines. In addition, differentiation assays in vitro in FACS-sorted LSK population of 52 weeks old miR-199b KO mice revealed that loss of miR-199b promotes accumulation of GMP-like progenitors but decreases lymphoid differentiation, suggesting that miR199b may regulate age-related pathway. We used non-competitive repopulation studies to show that overall BM donor cellularity was markedly elevated in the absence of miR-199b among HSPCs, committed progenitors and mature myeloid but not lymphoid cell compartments. This may suggest that miR-199b-null LT-HSC render enhanced self-renewal capacity upon regeneration demand yet promoting myeloid reconstitution. Moreover, when we challenged the self-renewal potential of miR-199b-null LT-HSC by a secondary BM transplantation of unfractionated BM cells from primary recipients into secondary hosts, changes in PB reconstitution were dramatic. Gating for HSPCs populations in the BM of secondary recipients in 24 weeks after BMT revealed that levels of LT-HSC were similar between recipients reconstituted with wild-type and miR-199b-KO chimeras, whereas miR-199b-null HSCs contributed relatively more into MPPs. Our data identify that attenuation of miR-199b leads to loss of quiescence and premature differentiation of HSCs. These findings indicate that loss of miR-199b promotes signals that govern differentiation of LT-HSC to MPP leading to accumulation of highly proliferative progenitors during long-term reconstitution. Hematopoietic regeneration via repopulation studies also revealed that miR-199b-deficient HSPCs have a lineage skewing potential toward myeloid lineage or clonal myeloid bias, a hallmark of aging HSCs, implicating a regulatory role for miR-199b in hematopoietic aging. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document