Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis

2000 ◽  
Vol 113 (7) ◽  
pp. 1231-1239 ◽  
Author(s):  
Y. Bhaud ◽  
D. Guillebault ◽  
J. Lennon ◽  
H. Defacque ◽  
M.O. Soyer-Gobillard ◽  
...  

The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wai Kuan Yong ◽  
Sri Nurestri Abd Malek

We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.


2019 ◽  
Vol 18 (2) ◽  
pp. 21-26
Author(s):  
E. A. Shestakova ◽  
T. A. Bogush

Introduction . Inactive X chromosome (Xi) is associated with noncoding XIST RNA, series of proteins and contains multiple epigenetic modifications that altogether determine a silence of the most of X-linked genes. Recently the data were obtained that tumor suppressor BRCA1 is also associated with Xi. The purpose of this study was to reveal the colocalization of BRCA1 and XIST RNA and precise spatial organization on Xi with the high resolution of confocal microscopy.Materials and methods . The object of the study is IMR90hTERT diploid immortalized fibroblast cell line. For BRCA1 and XIST RNA colocalization analysis on Xi the method of fluorescent hybridization in situ associated with immunofluorescent cell staining (immunoFISH) and confocal microscopy were used. For BRCA1 and heterochromatin protein-1 colocalization study the method of double immunofluorescent staining and common fluorescent microscopy were applied. Results . The study using confocal fluorescent microscopy with higher resolution has demonstrated at first the colocalization of BRCA1 with XIST RNA region of Xi revealed with XIST RNA probes and with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. Altogether, the data obtained suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the regulation of XIST RNA association with Xi. Moreover, according to the results of confocal microscopy, BRCA1 also colocalizes with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. This indicates a possible involvement of this protein in the replication of pericentromeric repeats in cellular chromosomes. Colocalization of BRCA1 with heterochromatin protein-1α presented in pericentromeric regions of all chromosomes supports this suggestion.Conclusions . Altogether, the data obtained in this study suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the association with noncoding inhibiting XIST RNA and in replication of heterochromatin regions. 


2005 ◽  
Vol 25 (15) ◽  
pp. 6330-6337 ◽  
Author(s):  
Jordi Malapeira ◽  
Alberto Moldón ◽  
Elena Hidalgo ◽  
Gerald R. Smith ◽  
Paul Nurse ◽  
...  

ABSTRACT The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, a reductional pattern of chromosome segregation at the first division, and a second division with no intervening DNA synthesis. Cyclin-dependent kinases are essential for progression through the meiotic cell cycle, as for the mitotic cycle. Here we show that a fission yeast cyclin, Rem1, is present only during meiosis. Cells lacking Rem1 have impaired meiotic recombination, and Rem1 is required for premeiotic DNA synthesis when Cig2 is not present. rem1 expression is regulated at the level of both transcription and splicing, with Mei4 as a positive and Cig2 a negative factor of rem1 splicing. This regulation ensures the timely appearance of the different cyclins during meiosis, which is required for the proper progression through the meiotic cell cycle. We propose that the meiosis-specific B-type cyclin Rem1 has a central role in bringing about progression through meiosis.


1986 ◽  
Vol 28 (5) ◽  
pp. 735-743 ◽  
Author(s):  
Jennifer A. Marshall Graves ◽  
Jaclyn M. Wrigley

The hypothesis that the direction of chromosome segregation in cell hybrids is determined by the interaction of parent cell cycles, or S-phase times, predicts that the segregant parent will always be the one with the longer cycle, or the longer S phase, and that late replicating chromosomes will be more frequently lost. We have tested this hypothesis by studying cell cycle parameters of mouse, Chinese hamster, and platypus parent cells and by observing chromosome loss and replication patterns in hybrids between them. Two types of hybrids have been studied: mouse–hamster hybrids showed gradual segregation, in one or other direction, of 10–60% chromosomes, while rodent–platypus hybrids (which could be selected under conditions optimal for either parent cell) showed rapid and extreme segregation of platypus chromosomes. We found no correlation between the direction of segregation and the relative lengths of parental cycle times, or phase times, nor between sequence of replication and frequency with which segregant chromosomes are lost. We therefore conclude that the direction and extent of segregation is not directly determined by the interaction of parental cycle or phase times.Key words: cell hybrids, chromosome loss, cell cycle, S phase.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Xing ◽  
Carmen Mroß ◽  
Linlin Hao ◽  
Martina Munck ◽  
Alexandra Herzog ◽  
...  

The nuclear envelope proteins, Nesprins, have been primarily studied during interphase where they function in maintaining nuclear shape, size, and positioning. We analyze here the function of Nesprin-2 in chromatin interactions in interphase and dividing cells. We characterize a region in the rod domain of Nesprin-2 that is predicted as SMC domain (aa 1436–1766). We show that this domain can interact with itself. It furthermore has the capacity to bind to SMC2 and SMC4, the core subunits of condensin. The interaction was observed during all phases of the cell cycle; it was particularly strong during S phase and persisted also during mitosis. Nesprin-2 knockdown did not affect condensin distribution; however we noticed significantly higher numbers of chromatin bridges in Nesprin-2 knockdown cells in anaphase. Thus, Nesprin-2 may have an impact on chromosomes which might be due to its interaction with condensins or to indirect mechanisms provided by its interactions at the nuclear envelope.


2000 ◽  
Vol 20 (1) ◽  
pp. 242-248 ◽  
Author(s):  
Miguel Godinho Ferreira ◽  
Corrado Santocanale ◽  
Lucy S. Drury ◽  
John F. X. Diffley

ABSTRACT The Dbf4p/Cdc7p protein kinase is essential for the activation of replication origins during S phase. The catalytic subunit, Cdc7p, is present at constant levels throughout the cell cycle. In contrast, we show here that the levels of the regulatory subunit, Dbf4p, oscillate during the cell cycle. Dbf4p is absent from cells during G1and accumulates during the S and G2 phases. Dbf4p is rapidly degraded at the time of chromosome segregation and remains highly unstable during pre-Start G1 phase. The rapid degradation of Dbf4p during G1 requires a functional anaphase-promoting complex (APC). Mutation of a sequence in the N terminus of Dbf4p which resembles the cyclin destruction box eliminates this APC-dependent degradation of Dbf4p. We suggest that the coupling of Dbf4p degradation to chromosome separation may play a redundant role in ensuring that prereplicative complexes, which assemble after chromosome segregation, do not immediately refire.


1973 ◽  
Vol 13 (1) ◽  
pp. 139-171
Author(s):  
M. E. HAYNES ◽  
H. G. DAVIES

Monolayers of chromatin structural units about 33.0 nm in width enclosed on both sides by extensions of the nuclear envelope, called sheets, and located either in the cytoplasm (c. .n. .c type), or within the nucleus (c. .n. .n type), are common in cultured cells of Burkitt's lymphoma. The sheets are absent from mitotic cells except at telophase where, unlike interphase, type c. .n. .n is more numerous than c. .n. .c. The degree of nuclear asymmetry is defined in terms of the increase in enclosing membranes over that required to enclose the same area in a circular configuration. The percentage number (Ps) of cells with nucleus-associated sheets averaged over all stages in the cell cycle, increases with cell viability and with nuclear asymmetry. However, during the cycle there is a marked diminution in Ps during the S-phase of DNA synthesis when nuclear asymmetry itself does not change. Hence, it is suggested, and data on other cell types support the hypothesis, that nuclear asymmetry is a necessary but not sufficient factor in causing sheets to form. Microtubules are present within the cytoplasm and their morphological arrangement suggests a role in determining nuclear asymmetry. Treatment with a microtubule depolymerizing agent, colcemid, does not alter either the existing nuclear asymmetry or Ps, but when cells are treated early in S-phase the reappearance of sheets in the G2 phase of the cell cycle is considerably delayed. The reappearance takes place when the microtubules are still depolymerized. It is suggested that synthesis of membrane in excess of what is needed to enclose a sphere results in nuclear asymmetry and associated membrane-enclosed monolayers, the resulting nuclear conformation, including the distribution of membrane between types c. .n. .n and c. .n. .c, depending on what is energetically favoured. No biochemical function has yet been assigned to sheets.


2021 ◽  
Author(s):  
Alexandra P Navarro ◽  
Iain M Cheeseman

The kinetochore is a macromolecular structure that is required to ensure proper chromosome segregation during each cell division. The kinetochore is assembled upon a platform of the 16-subunit Constitutive Centromere Associated Network (CCAN), which is present at centromeres throughout the cell cycle. The nature and regulation of CCAN assembly, interactions, and dynamics required to facilitate changing centromere properties and requirements remain to be fully elucidated. The CENP-LN CCAN sub-complex displays a unique cell cycle-dependent localization behavior, peaking in S phase. Here, we demonstrate that phosphorylation of CENP-L and CENP-N controls CENP-LN complex formation and localization in a cell cycle-dependent manner. Mimicking constitutive phosphorylation of either CENP-L or CENP-N or simultaneously preventing phosphorylation of both proteins prevents CENP-LN localization and disrupts chromosome segregation. Together, our work suggests that cycles of phosphorylation and dephosphorylation are critical for CENP-LN complex recruitment and dynamics at centromeres to enable cell cycle-dependent CCAN reorganization.


2000 ◽  
Vol 278 (2) ◽  
pp. F209-F218 ◽  
Author(s):  
L. Michea ◽  
D. R. Ferguson ◽  
E. M. Peters ◽  
P. M. Andrews ◽  
M. R. Kirby ◽  
...  

We investigated the effects of hyperosmolality on survival and proliferation of subconfluent cultures of mIMCD3 mouse renal collecting duct cells. High NaCl and/or urea (but not glycerol) reduces the number of viable cells, as measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Raising osmolality from a normal level (300 mosmol/kg) to 550–1,000 mosmol/kg by adding NaCl and/or urea greatly increases the proportion of cells in the G2M phase of the cell cycle within 8 h, as measured by flow cytometry. Up to 600 mosmol/kg the effect is only transient, and by 12 h at 550 mosmol/kg the effect reverses and most cells are in G1. Flow cytometry with 5-bromodeoxyuridine (BrdU) pulse-chase demonstrates that movement through the S phase of the cell cycle slows, depending on the concentrations of NaCl and/or urea, and that the duration of G2M increases greatly (from 2.5 h at 300 mosmol/kg to more than 16 h at the higher osmolalities). Addition of NaCl and/or urea to total osmolality of 550 mosmol/kg or more also induces apoptosis, as demonstrated by characteristic electron microscopic morphological changes, appearance of a subdiploid peak in flow cytometry, and caspase-3 activation. The number of cells with subdiploid DNA and activated caspase-3 peaks at 8–12 h. Caspase-3 activation occurs in all phases of the cell cycle, but to a disproportionate degree in G0/G1 and S phases. We conclude that elevated NaCl and/or urea reduces the number of proliferating mIMCD3 cells by slowing the transit through the S phase, by cell cycle delay in the G2M and G1, and by inducing apoptotic cell death.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15181-15181
Author(s):  
L. Wang

15181 Background: To study the effects of gemcitabine on cell apoptosis and cell cycle of gastric cancer Methods: Gastric cancer cells were cultured with different concentrations of gemcitabine (0.001, 0.01 and 0.1μM). MTT test was performed to evaluate the cell proliferation. The cells were divided into three groups: control group (cultured in RPMI-1640) and 5-FU group ( cultured in RPMI-1640 with 5- FU) and gemcitabine group ( cultured in RPMI-1640 with Gemcitabine). Flow cytometry was performed to determine the apoptotic rate and the cell cycle phases. Morphological changes were observed by phasecontrast microscope. Results: The cell proliferation was inhibited in experiment groups treated with gemcitabine and 5-FU, compared with control groups(P<0.01). Gemcitabine can induce cell apoptosis. 0.01μM and 0.1μM gemcitabine were much more effective than 0.001μM. On the third day, S phase cells accounted for 24.5% and G2-M phase cells 0.08% in the control group, while 24.6% and 0.06%, respectively in the gemcitabine group. However, on the seventh day, those came to 20.8% and 0.41% in the control group, and 18.2% and 1. 55% in the gemcitabine group, indicating a significant change in the cell cycle ( P<0.01). Conclusions: Gemcitabine can inhibit the cell proliferation, and it maybe related to cell apoptosis. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document