Observations on the Origin and Significance of the Nuclear Envelope-Limited Monolayers of Chromatin Unit Threads associated with the Cell Nucleus

1973 ◽  
Vol 13 (1) ◽  
pp. 139-171
Author(s):  
M. E. HAYNES ◽  
H. G. DAVIES

Monolayers of chromatin structural units about 33.0 nm in width enclosed on both sides by extensions of the nuclear envelope, called sheets, and located either in the cytoplasm (c. .n. .c type), or within the nucleus (c. .n. .n type), are common in cultured cells of Burkitt's lymphoma. The sheets are absent from mitotic cells except at telophase where, unlike interphase, type c. .n. .n is more numerous than c. .n. .c. The degree of nuclear asymmetry is defined in terms of the increase in enclosing membranes over that required to enclose the same area in a circular configuration. The percentage number (Ps) of cells with nucleus-associated sheets averaged over all stages in the cell cycle, increases with cell viability and with nuclear asymmetry. However, during the cycle there is a marked diminution in Ps during the S-phase of DNA synthesis when nuclear asymmetry itself does not change. Hence, it is suggested, and data on other cell types support the hypothesis, that nuclear asymmetry is a necessary but not sufficient factor in causing sheets to form. Microtubules are present within the cytoplasm and their morphological arrangement suggests a role in determining nuclear asymmetry. Treatment with a microtubule depolymerizing agent, colcemid, does not alter either the existing nuclear asymmetry or Ps, but when cells are treated early in S-phase the reappearance of sheets in the G2 phase of the cell cycle is considerably delayed. The reappearance takes place when the microtubules are still depolymerized. It is suggested that synthesis of membrane in excess of what is needed to enclose a sphere results in nuclear asymmetry and associated membrane-enclosed monolayers, the resulting nuclear conformation, including the distribution of membrane between types c. .n. .n and c. .n. .c, depending on what is energetically favoured. No biochemical function has yet been assigned to sheets.

2000 ◽  
Vol 113 (7) ◽  
pp. 1231-1239 ◽  
Author(s):  
Y. Bhaud ◽  
D. Guillebault ◽  
J. Lennon ◽  
H. Defacque ◽  
M.O. Soyer-Gobillard ◽  
...  

The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle.


1983 ◽  
Vol 3 (2) ◽  
pp. 172-181
Author(s):  
J Van't Hof ◽  
C A Bjerknes ◽  
N C Delihas

Experiments with cultured pea roots were conducted to determine (i) whether extrachromosomal DNA was produced by cells in the late S phase or in the G2 phase of the cell cycle, (ii) whether the maturation of nascent DNA replicated by these cells achieved chromosomal size, (iii) when extrachromosomal DNA was removed from the chromosomal duplex, and (iv) the replication of nascent chains by the extrachromosomal DNA after its release from the chromosomal duplex. Autoradiography and cytophotometry of cells of carbohydrate-starved root tips revealed that extrachromosomal DNA was produced by a small fraction of cells accumulated in the late S phase after they had replicated about 80% of their DNA. Velocity sedimentation of nascent chromosomal DNA in alkaline sucrose gradients indicated that the DNA of cells in the late S phase failed to achieve chromosomal size. After reaching sizes of 70 X 10(6) to 140 X 10(6) daltons, some of the nascent chromosomal molecules were broken, presumably releasing extrachromosomal DNA several hours later. Sedimentation of selectively extracted extrachromosomal DNA either from dividing cells or from those in the late S phase showed that it replicated two nascent chains, one of 3 X 10(6) daltons and another of 7 X 10(6) daltons. Larger molecules of extrachromosomal DNA were detectable after cells were labeled for 24 h. These two observations were compatible with the idea that the extrachromosomal DNA was first replicated as an integral part of the chromosomal duplex, was cut from the duplex, and then, once free of the chromosome, replicated two smaller chains of 3 X 10(6) and 7 X 10(6) daltons.


1985 ◽  
Vol 225 (2) ◽  
pp. 529-533 ◽  
Author(s):  
A J Strain ◽  
W A H Wallace ◽  
A H Wyllie

Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.


Author(s):  
Deqin Kong ◽  
Rui Liu ◽  
Jiangzheng Liu ◽  
Qingbiao Zhou ◽  
Jiaxin Zhang ◽  
...  

Cubic membranes (CMs) represent unique biological membrane structures with highly curved three-dimensional periodic minimal surfaces, which have been observed in a wide range of cell types and organelles under various stress conditions (e. g., starvation, virus-infection, and oxidation). However, there are few reports on the biological roles of CMs, especially their roles in cell cycle. Hence, we established a stable cell population of human hepatocellular carcinoma cells (HepG2) of 100% S phase by thymidine treatment, and determined certain parameters in G2 phase released from S phase. Then we found a close relationship between CMs formation and cell cycle, and an increase in reactive oxygen species (ROS) and mitochondrial function. After the synchronization of HepG2 cells were induced, CMs were observed through transmission electron microscope in G2 phase but not in G1, S and M phase. Moreover, the increased ATP production, mitochondrial and intracellular ROS levels were also present in G2 phase, which demonstrated a positive correlation with CMs formation by Pearson correlation analysis. This study suggests that CMs may act as an antioxidant structure in response to mitochondria-derived ROS during G2 phase and thus participate in cell cycle progression.


1988 ◽  
Vol 8 (10) ◽  
pp. 4576-4578 ◽  
Author(s):  
S Dalton ◽  
J R Wells

Levels of trans-acting factor (H1-SF) binding to the histone H1 gene-specific motif (5'-AAACACA-3' [L. S. Coles and J. R. E. Wells, Nucleic Acids Res. 13:585-594, 1985]) increase 12-fold from G1 to S-phase in synchronized cells and decrease again in G2 phase of the cell cycle. Since the H1 element is required for S-phase expression of H1 genes (S. Dalton and J. R. E. Wells, EMBO J. 7:49-56, 1988), it is likely that the increased levels of H1-SF binding component play an important role in S-phase regulation of H1 gene transcription.


1990 ◽  
Vol 110 (4) ◽  
pp. 939-945 ◽  
Author(s):  
S Dübel ◽  
H C Schaller

Using bromodeoxyuridine incorporation to label cells in S phase we found that ectodermal epithelial cells of Hydra can start and complete their terminal differentiation in the G2 phase of the cell cycle. Most of the cells traversed their last S phase before the signal for differentiation, namely excision of head or foot, was given. The S phase inhibitor aphidicolin accordingly did not inhibit head or foot specific differentiation. The results show that differentiation to either head- or foot-specific ectodermal epithelial cells can start and is completed within the same G2 phase. This is therefore the first description of a complete differentiation from a population of proliferating cells to terminally differentiated, cell cycle-arrested cells without the necessity of passing through an S phase or mitosis.


2001 ◽  
Vol 12 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Matthew R. Alexander ◽  
Mike Tyers ◽  
Mireille Perret ◽  
B. Maureen Craig ◽  
Karen S. Fang ◽  
...  

Exposure of yeast cells to an increase in external osmolarity induces a temporary growth arrest. Recovery from this stress is mediated by the accumulation of intracellular glycerol and the transcription of several stress response genes. Increased external osmolarity causes a transient accumulation of 1N and 2N cells and a concomitant depletion of S phase cells. Hypertonic stress triggers a cell cycle delay in G2 phase cells that appears distinct from the morphogenesis checkpoint, which operates in early S phase cells. Hypertonic stress causes a decrease in CLB2 mRNA, phosphorylation of Cdc28p, and inhibition of Clb2p-Cdc28p kinase activity, whereas Clb2 protein levels are unaffected. Like the morphogenesis checkpoint, the osmotic stress-induced G2 delay is dependent upon the kinase Swe1p, but is not tightly correlated with inhibition of Clb2p-Cdc28p kinase activity. Thus, deletion ofSWE1 does not prevent the hypertonic stress-induced inhibition of Clb2p-Cdc28p kinase activity. Mutation of the Swe1p phosphorylation site on Cdc28p (Y19) does not fully eliminate the Swe1p-dependent cell cycle delay, suggesting that Swe1p may have functions independent of Cdc28p phosphorylation. Conversely, deletion of the mitogen-activated protein kinase HOG1 does prevent Clb2p-Cdc28p inhibition by hypertonic stress, but does not block Cdc28p phosphorylation or alleviate the cell cycle delay. However, Hog1p does contribute to proper nuclear segregation after hypertonic stress in cells that lack Swe1p. These results suggest a hypertonic stress-induced cell cycle delay in G2 phase that is mediated in a novel way by Swe1p in cooperation with Hog1p.


1997 ◽  
Vol 17 (3) ◽  
pp. 1425-1433 ◽  
Author(s):  
S E Lee ◽  
R A Mitchell ◽  
A Cheng ◽  
E A Hendrickson

Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroaki Shimono ◽  
Atsushi Kaida ◽  
Hisao Homma ◽  
Hitomi Nojima ◽  
Yusuke Onozato ◽  
...  

AbstractIn this study, we examined the fluctuation in radioresponse of HeLa cells during the cell cycle. For this purpose, we used HeLa cells expressing two types of fluorescent ubiquitination-based cell cycle indicators (Fucci), HeLa-Fucci (CA)2 and HeLa-Fucci (SA), and combined this approach with the micronucleus (MN) assay to assess radioresponse. The Fucci system distinguishes cell cycle phases based on the colour of fluorescence and cell morphology under live conditions. Time-lapse imaging allowed us to further identify sub-positions within the G1 and S phases at the time of irradiation by two independent means, and to quantitate the number of MNs by following each cell through M phase until the next G1 phase. Notably, we found that radioresponse was low in late G1 phase, but rapidly increased in early S phase. It then decreased until late S phase and increased in G2 phase. For the first time, we demonstrated the unique fluctuation of radioresponse by the MN assay during the cell cycle in HeLa cells. We discuss the difference between previous clonogenic experiments using M phase-synchronised cell populations and ours, as well as the clinical implications of the present findings.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5125-5125
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Anderson Ferreira Cunha ◽  
Ana Flavia Brugnerotto ◽  
Sheley Gambero ◽  
Joao Machado-Neto ◽  
...  

Abstract Abstract 5125 The TOB1 gene is a transcription factor responsible for the transduction of the gene ERBB2. It is a member of a family of cell suppressor proliferation proteins called TOB/BTG1 family; also, this gene operates on the inhibition of neoplastic transformation. The TOB1 gene presents a decreased expression in several types of cancer such as lung, breast, thyroid and stomach cancer. However, the function of this gene in chronic myeloid leukemia (CML) remains unknown. Aiming to evaluate the inhibition of gene TOB1 into BCR-ABL positive cells and trying to elucidate the molecular mechanisms associated with the inhibition of this gene in the CML we proceed to a more detailed study of this gene. The inhibition of this gene in K562 cells was performed using specific lentivirus. The effect of silencing TOB1 in the proliferation of K562 cells was assessed by the MTT assay after 48 hours of culture; in shTOB1 the proliferation was increased in comparison with shControl cells. To evaluate the synergistic effect between the inhibition of kinase tyrosine activity of BCR-ABL and the inhibition of TOB1 we performed a treatment with different concentrations of imatinib (0. 1, 0. 5 and 1μM), but we observed the decrease in cell proliferation of shTOB1 cells to similar levels of shControl cells only at the 1μM concentration. Therefore, the TOB1 silencing increased the proliferation of K562 cells without an additional effect of a treatment with Imatinib. To analyze the clonogenicity, we performed a formation of colonies assay, in methylcellulose, to determine whether silencing TOB1 could cause a change in the clonal growth of positive BCR-ABL cells. There was no significant change in the number of colonies that grew in cell culture shTOB1 compared to shControl cells. These results suggest that silencing TOB1 in K562 cells may not change the clonogenicity. In the assessment of cell cycle, the flow cytometry analysis revealed a significant accumulation of K562 cells in S phase, with consequent reduction of cells in the G2 phase of the cell cycle in cells shTOB1 compared to cells shControl. The TOB1 gene silencing in K562 cells kept the cells in the S phase and prevented the entry of cells in the G2 phase showing that the inhibition of gene TOB1 induced an increase in proliferation of K562 BCR-ABL cells. The level of apoptosis was assessed by flow cytometry after labeling the cells with anexin-V/PI. The Imatinib treatment presented dose-response in the induction of apoptosis as expected. However, a cumulative effect with TOB1 silencing was not observed. Furthermore, the apoptosis was also assessed by assays of caspases 3, 8 and 9, which showed an increase of the caspase activity of shControl cells in relation of the shTOB1 cells, showing that inhibition of this gene also changes the level of apoptosis. These results corroborate the literature data that report the relationship of this tumour suppressor gene in signalling pathways related to angiogenesis, carcinogenesis, apoptosis and metastasis. When we relate the results obtained with the LMC, we can consider the possibility of TOB1 regulation changes be related to modification of important signalling pathways such as AKT, PI3K, STAT3 and STAT5, among others. Furthermore, the inhibition of TOB1 may be related with an increase on the number of BCR-ABL positive cells and subsequent disease progression. In conclusion, this study confirmed literature data showing that TOB1 gene works as a tumour suppressor protein in cells of many types of cancer. From this work we can infer that in CML the expression of this gene is transformed, resulting in changing of the capacity of induction of apoptosis, decrease tumour necrosis and increase cell proliferation. This work was supported by FAPESP and INCT. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document