Human cells lacking CDC14A and CDC14B show differences in ciliogenesis but not in mitotic progression
Budding yeast Cdc14 phosphatase has a central role in mitotic exit and cytokinesis. Puzzlingly, a uniform picture for the three human CDC14 paralogues hCDC14A, B and C in cell cycle control has not emerged to date. Redundant functions between the three hCDC14 phosphatases could explain this unclear picture. To address the possibility of redundancy, we tested expression of hCDC14 and analysed cell cycle progression of cells with single- and double-deletion in hCDC14 genes. Our data suggest that hCDC14C is not expressed in human RPE1 cells excluding a function in this cell line. Single- and double-knockouts (KO) of hCDC14A and hCDC14B in RPE1 cells indicate that both phosphatases are not important for the timing of mitotic phases, cytokinesis and cell proliferation. However, cycling hCDC14A KO and hCDC14B KO cells show altered ciliogenesis compared to WT cells. The cilia of cycling hCDC14A KO cells are longer, whereas hCDC14B KO cilia are more frequent and disassemble faster. In conclusion, this study demonstrates that the cell cycle functions of CDC14 proteins are not conserved between yeast and human cells.