scholarly journals Creep rupture of wallaby tail tendons.

1995 ◽  
Vol 198 (3) ◽  
pp. 831-845 ◽  
Author(s):  
X T Wang ◽  
R F Ker

The tail tendons from wallabies (Macropus rufogriseus) suffer creep rupture at stresses of 10 MPa or above, whereas their yield stress in a dynamic test is about 144 MPa. At stresses between 20 and 80 MPa, the time-to-rupture decreases exponentially with stress, but at 10 MPa, the lifetime is well above this exponential. For comparison, the stress on a wallaby tail tendon, when its muscle contracts isometrically, is about 13.5 MPa. Creep lifetime depends sharply on temperature and on specimen length, in contrast to strength and stiffness as observed in dynamic tests. The creep curve (strain versus time) can be considered as a combination of primary creep (decelerating strain) and tertiary creep (accelerating strain). Primary creep is non-damaging, but tertiary creep is accompanied by accumulating damage, with loss of stiffness and strength. 'Damage' is quantitatively defined as the fractional loss of stiffness. A creep theory is developed in which the whole of tertiary creep and, in particular, the creep lifetime are predicted from measurements made at the onset of creep, when the tendon is undamaged. This theory is based on a 'damage hypothesis', which can be stated as: damaged material no longer contributes to stiffness and strength, whereas intact material makes its full contribution to both.

1981 ◽  
Vol 103 (3) ◽  
pp. 253-260 ◽  
Author(s):  
M. G. Cowgill ◽  
K. C. Thomas

The in-air creep-rupture properties of SA-516 (Grade 55) steel have been investigated in the temperature range 426–872°C (800–1600°F). The rupture time and creep rate data have been correlated using the Larson-Miller method, and relationships have been developed between the time to onset of tertiary creep and the time to rupture. Interpretation of the data involved consideration of the microstructural changes above and below the eutectoid temperature, and in which decarburization was an important factor.


1984 ◽  
Vol 106 (4) ◽  
pp. 405-409 ◽  
Author(s):  
Dusan Krajcinovic ◽  
Sebastine Selvaraj

Introducing a special vectorial internal variable quantifying the density, distribution and orientation of planar microcracks and assuming the existence of a potential in the space of affinities developed is a continuum creep theory which accounts for gradual deterioration of material. The reported numerical results demonstrate the utility of the theory in modelling the tertiary creep phase and predicting the onset of the creep rupture.


2020 ◽  
Vol 39 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Sojiro Uemura ◽  
Shiho Yamamoto Kamata ◽  
Kyosuke Yoshimi ◽  
Sadahiro Tsurekawa

AbstractMicrostructural evolution in the TiC-reinforced Mo–Si–B-based alloy during tensile creep deformation at 1,500°C and 137 MPa was investigated via scanning electron microscope-backscattered electron diffraction (SEM-EBSD) observations. The creep curve of this alloy displayed no clear steady state but was dominated by the tertiary creep regime. The grain size of the Moss phase increased in the primary creep regime. However, the grain size of the Moss phase was found to remarkably decrease to <10 µm with increasing creep strain in the tertiary creep regime. The EBSD observations revealed that the refinement of the Moss phase occurred by continuous dynamic recrystallization including the transformation of low-angle grain boundaries to high-angle grain boundaries. Accordingly, the deformation of this alloy is most likely to be governed by the grain boundary sliding and the rearrangement of Moss grains such as superplasticity in the tertiary creep regime. In addition, the refinement of the Moss grains surrounding large plate-like T2 grains caused the rotation of their surfaces parallel to the loading axis and consequently the cavitation preferentially occurred at the interphases between the end of the rotated T2 grains and the Moss grains.


2007 ◽  
Vol 340-341 ◽  
pp. 223-228
Author(s):  
Ying Fang Fan ◽  
Zhi Qiang Hu ◽  
Jing Zhou

The structural behavior of an old six-span reinforced concrete arch bridge, which has been in service for about 40 years, is investigated. Field monitoring (inclusive of test of material property, static and dynamic test of the bridge) was conducted, static and dynamic responses of the bridge are obtained. Based on the primitive bridge, a scaled one-span bridge model was fabricated by organic-glasses. Both the static and dynamic tests were executed on the bridge model in the laboratory. Since the arch rib is the crucial member for the arch bridge, 7 notches were cut on both arch ribs of the bridge model to simulate different damages of the arch rib. Mechanical responses of the bridge with different damages on the arch ribs were achieved. FEM analyses were preformed on the bridge as well. Numerical results show good agreement with the experimental results.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Hideaki Kushima

Creep deformation property of Grade T91 steels over a range of temperatures from 550 to 625°C was analyzed by means of the empirical creep equation reported in the previous study [1]. The creep equation consists of four time dependent terms and one constant and time to rupture is estimated as a time to total strain of 10%. Accuracy of the creep equation to represent creep curve and to predict time to rupture and minimum creep rate was indicated. Times to minimum creep rate, total strain of 1%, initiation of tertiary creep and rupture were evaluated by the creep equation. Stress dependence of strains at minimum creep rate and the initiation of tertiary creep were analyzed. Contribution of four time dependent terms to the strains at minimum creep rate, total strain of 1% and initiation of tertiary creep was investigated. Three parameters to determine a temperature and time-dependent stress intensity limit, St, were compared and a dominant factor of St was examined. Heat-to-heat variation of the creep deformation property was investigated on two heats of T91 steels contain low and high nickel concentrations.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2084 ◽  
Author(s):  
Piotr Mackiewicz ◽  
Antoni Szydło

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers’ model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition—e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.


2013 ◽  
Vol 405-408 ◽  
pp. 2498-2502
Author(s):  
Xiang Ping Fu ◽  
Bin Peng ◽  
Zheng Ji

The basic frequency of masonry specimens can be obtained by dynamic tests with ambient or artificial excitation. The elastic modulus of masonry structures, as well as the damage factors, can then be determined by training their finite element models and make the calculated frequencies agree with the measured ones. Using 530 groups of dynamic test data, the damage factors of four masonry specimens were identified. The Bayesian inferences of the highly diverse measured results were conducted through a Markov Chain Monte Carlo (MCMC) sampling method, and the location of the damage was identified. The methodology was applicable, and can be used in the damage identification for other materials or structures.


Author(s):  
Mohammad Shafinul Haque

Abstract The MPC Omega model has become popular in recent years for the prediction of creep deformation. Successful predictions of the tertiary creep for a wide range of materials are available. The Omega model relates the strain as a linear function of the natural logarithm of strain-rate. It is assumed that the primary creep is a short-lived phenomenon and can be neglected. The Omega model is unable to predict the primary creep deformation. Often primary creep is a long-lived phenomenon and cannot be neglected. A mathematical modification can be performed to incorporate the primary creep curve in the Omega model. A common approach is by adding a work hardening function to the original constitutive model. Approaches using power, or exponential, or logarithmic work-hardening function are available. However, it is difficult to discern which function is the best for accurate prediction. In this study, the Omega model is modified to predict the primary and tertiary creep deformation curve by adding a hyperbolic tangent work hardening function. A metamodel incorporating the four modified Omega sub-models (power, exponential, logarithmic and hyperbolic tangent) is developed. The metamodel enables the determination of the most suitable model for a given material and avoids the force fit of a preselected model. Short, medium, and long-term creep deformation data for alloy P91 (pipe) and G91 (plate) at two isotherms of 600°C and 650°C are used to calibrate the metamodel. The data include five stress levels ranging from 70 to 160 MPa including creep life from 233 to 1.1 × 105 hrs. A detail calibration process is provided. A numerical analysis is performed to compare the four submodels. It is observed that the selection of the most suitable function depends on the loading condition and material properties. Based on the analysis, a recommendation to select the suitable work-hardening function to predict the primary and tertiary creep deformation curve is presented.


2010 ◽  
Vol 20 (4) ◽  
pp. 578-597 ◽  
Author(s):  
Konstantin Naumenko ◽  
Holm Altenbach ◽  
Andreas Kutschke

Phenomenological constitutive equations that describe inelastic behavior of advanced steels at elevated temperature are developed. To characterize hardening, recovery, and softening processes, a composite model with creep-hard and creep-soft constituents is applied. The volume fraction of the creep-hard constituent is assumed to decrease toward a saturation value. This approach reproduces well the primary creep as a result of stress redistribution between constituents and tertiary creep as a result of softening. To describe the whole tertiary creep stage, a damage variable in the sense of continuum damage mechanics is introduced. The material parameters and the response functions in the model are calibrated against experimental creep curves for X20CrMoV12-1 steel. For the verification, simulations of the inelastic response are performed and the results compared with experimental data including creep under stress change conditions and stress-strain response under constant strain rate. Furthermore, the lifetime predictions are analyzed and compared with the published creep rupture strength data. The results show that the consideration of both softening and damage processes is necessary to characterize the long-term strength in a wide stress range. Finally, the model is generalized to the multi-axial stress state.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada

Creep deformation property of Grade 91 steels was analyzed on more than 370 creep curves over a wide range of time to rupture from about 10 hours to beyond 100,000 hours, in order to evaluate time to 1% total strain, time to minimum creep rate and time to initiation of tertiary creep. Time to initiation of tertiary creep was assessed as a 0.2% offset with a slope of minimum creep rate. It is difficult to determine time to minimum creep rate precisely, which is a basis of 0.2% offset, however, it has been confirmed that time to initiation of tertiary creep is not sensitive to the time when the creep rate indicates minimum value. Life ratio of 1% total strain time against creep rupture time increases up to about 60% with increase of temperature and decrease of stress. Life ratio of time to initiation of tertiary creep also tends to increase with decrease in stress. However, change of it is in a range of 50 to 60% of creep rupture life over a wide range of creep rupture life from 10 hours to 100,000 hours, and it is not sensitive to creep test temperature. Over a range of temperatures from 500 to 600°C and up to about 200,000 hours, a temperature and time-dependent stress intensity limit, St is controlled by 67% of minimum stress to rupture. However, a difference between 67% of minimum stress to rupture and 80% of minimum stress to initiation of tertiary creep decreases with increases in temperature and time, and both values approach each other in the long-term beyond about 100,000 hours at 600°C. In the long-term beyond about 10,000 hours at 650°C, St is controlled by 80% of minimum stress to initiation of tertiary. The stable life fraction of time to initiation of tertiary creep establish a reliability of a temperature and time-dependent stress intensity limit value.


Sign in / Sign up

Export Citation Format

Share Document