scholarly journals Maintenance of Constant Wave Parameters by Sperm Flagella at Reduced Frequencies of Beat

1973 ◽  
Vol 59 (3) ◽  
pp. 617-629
Author(s):  
C. J. BROKAW ◽  
R. JOSSLIN

1. Treatment of Ciona spermatozoa with low concentrations of Triton X-100 (less than 0·01 %) causes them to beat at lower than normal frequencies. The wavelength of the flagellar bending waves remains constant over the range from 10 to 40 Hz. There is a small increase in wavelength at lower frequencies; in the range of 1·5-6·2 Hz, the wavelength averaged 114% of the normal value for Ciona spermatozoa. The angle of bend of the bent regions of the flagellar bending waves remained constant within ± 10% over this range of frequencies. 2. Decapitated sperm flagella from Lytechinus beat at a continually declining frequency as they exhaust their content of ATP. Both wavelength and bend angle retain normal values until the frequency falls below about 8 Hz. Both parameters increase at lower frequencies, with a sharp increase below 3 Hz. 3. ATP-reactivated spermatozoa from Lytechinus show relatively small changes in wavelength and bend angle as the frequency is varied over the range from 5 to 25 Hz by varying the ATP concentration. 4. Constancy of wavelength over a wide range of frequencies is consistent with the hypothesis that wavelength is determined by the relative values of viscous bending resistance within a flagellum and external viscosity. 5. No satisfactory explanation is available at present for the constancy of bend angle over a wide range of frequencies nor for the changes in wave parameters which are observed at low frequencies.

1980 ◽  
Vol 84 (1) ◽  
pp. 13-27 ◽  
Author(s):  
B H Gibbons ◽  
I R Gibbons

Sperm flagella of the sea urchin Tripneustes gratilla beat with asymmetrical bending waves after demembranation with Triton X-100 in the presence of EGTA and reactivation at pH 8.1 with 1 mM ATP in the presence of 2 mM MgSO4. Addition of 0.1--0.2 mM free Ca2+ to these reactivated sperm induces 70--95% of them to become quiescent. This quiescence can be reversed by reduction of the free Ca2% concentration with EGTA, or by dilution to reduce the MgATP2- concentration below 0.3 mM. The quiescent waveform is characterized by a sharp principal bend of approximately 5.6 rad in the proximal region of the flagellum, a slight reverse bend in the midregion that averages approximately 0.3 rad, and a principal bend of approximately 1.1 rad in the tip. The quiescent sperm are highly fragile mechanically, and disruption, including microtubule sliding, occurs spontaneously at a slow rate upon standing or immediately upon gentle agitation. Mild digestion by trypsin causes a gradual appearance of normal, symmetrical flagellar beating. Addition of increasing concentrations of vanadate to quiescent sperm causes a graded decrease in the proximal bend angle, with 50 micrometers vanadate reducing it to approximately 2.6 rad. In the presence of 0.1 mM free Ca2% and 10 micrometers vanadate, a characteristic, crescented stationary bend is induced in the demembranated sperm, without intermediate oscillatory beating, by the addition of either 0.1 or 1 mM ATP. In the absence of vanadate, these two concentrations of ATP produce asymmetric beating and quiescence, respectively. The results support the hypothesis that quiescence in live sperm is induced by an elevated concentration of intracellular Ca2%. In addition, they demonstrate that bending can occur in flagella in which oscillatory beating is inhibited and emphasize the close relationship between asymmetric beating and quiescence.


2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


2020 ◽  
Vol 16 (4) ◽  
pp. 537-542
Author(s):  
Zhigacheva Irina ◽  
Volodkin Aleksandr ◽  
Rasulov Maksud

Background: One of the main sources of ROS in stress conditions is the mitochondria. Excessive generation of ROS leads to oxidation of thiol groups of proteins, peroxidation of membrane lipids and swelling of the mitochondria. In this regard, there is a need to search for preparationsadaptogens that increase the body's resistance to stress factors. Perhaps, antioxidants can serve as such adaptogens. This work aims at studying the effect of antioxidant; the potassium anphen in a wide range of concentrations on the functional state of 6 day etiolated pea seedlings mitochondria (Pisum sativum L). Methods: The functional state of mitochondria was studied per rates of mitochondria respiration, by the level of lipid peroxidation and study of fatty acid composition of mitochondrial membranes by chromatography technique. Results: Potassium anphen in concentrations of 10-5 - 10-8 M and 10-13-10-16 prevented the activation of LPO in the mitochondrial membranes of pea seedlings, increased the oxidation rates of NAD-dependent substrates and succinate in the respiratory chain of mitochondria that probably pointed to the anti-stress properties of the drug. Indeed, the treatment of pea seeds with the preparation in concentrations of 10-13 M prevented the inhibition of growth of seedlings in conditions of water deficiency. Conclusion: It is assumed that the dose dependence of the biological effects of potassium anphen and the manifestation of these effects in ultra-low concentrations are due to its ability in water solutions to form a hydrate containing molecular ensembles (structures).


2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Unai Caballero ◽  
Sarah Kim ◽  
Elena Eraso ◽  
Guillermo Quindós ◽  
Valvanera Vozmediano ◽  
...  

Candida auris is an emergent fungal pathogen that causes severe infectious outbreaks globally. The public health concern when dealing with this pathogen is mainly due to reduced susceptibility to current antifungal drugs. A valuable alternative to overcome this problem is to investigate the efficacy of combination therapy. The aim of this study was to determine the in vitro interactions of isavuconazole with echinocandins against C. auris. Interactions were determined using a checkerboard method, and absorbance data were analyzed with different approaches: the fractional inhibitory concentration index (FICI), Greco universal response surface approach, and Bliss interaction model. All models were in accordance and showed that combinations of isavuconazole with echinocandins resulted in an overall synergistic interaction. A wide range of concentrations within the therapeutic range were selected to perform time-kill curves. These confirmed that isavuconazole–echinocandin combinations were more effective than monotherapy regimens. Synergism and fungistatic activity were achieved with combinations that included isavuconazole in low concentrations (≥0.125 mg/L) and ≥1 mg/L of echinocandin. Time-kill curves revealed that once synergy was achieved, combinations of higher drug concentrations did not improve the antifungal activity. This work launches promising results regarding the combination of isavuconazole with echinocandins for the treatment of C. auris infections.


1990 ◽  
Vol 272 (3) ◽  
pp. 749-753 ◽  
Author(s):  
K M Hurst ◽  
B P Hughes ◽  
G J Barritt

1. Guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulated by 50% the rate of release of [3H]choline and [3H]phosphorylcholine in rat liver plasma membranes labelled with [3H]choline. About 70% of the radioactivity released in the presence of GTP[S] was [3H]choline and 30% was [3H]phosphorylcholine. 2. The hydrolysis of phosphorylcholine to choline and the conversion of choline to phosphorylcholine did not contribute to the formation of [3H]choline and [3H]phosphorylcholine respectively. 3. The release of [3H]choline from membranes was inhibited by low concentrations of SDS or Triton X-100. Considerably higher concentrations of the detergents were required to inhibit the release of [3H]phosphorylcholine. 4. Guanosine 5′-[beta gamma-imido]triphosphate and guanosine 5′-[alpha beta-methylene]triphosphate, but not adenosine 5′-[gamma-thio]-triphosphate, stimulated [3H]choline release to the same extent as did GTP[S]. The GTP[S]-stimulated [3H]choline release was inhibited by guanosine 5′-[beta-thio]diphosphate, GDP and GTP but not by GMP. 5. It is concluded that, in rat liver plasma membranes, (a) GTP[S]-stimulated hydrolysis of phosphatidylcholine is catalysed predominantly by phospholipase D with some contribution from phospholipase C, and (b) the stimulation of phosphatidylcholine hydrolysis by GTP[s] occurs via a GTP-binding regulatory protein.


2017 ◽  
Vol 37 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Jusciêne B. Moura ◽  
Agueda C. de Vargas ◽  
Gisele V. Gouveia ◽  
João J. de S. Gouveia ◽  
Juracy C. Ramos-Júnior ◽  
...  

ABSTRACT: Cladonia substellata Vainio is a lichen found in different regions of the world, including the Northeast of Brazil. It contains several secondary metabolites with biological activity, including usnic acid, which has exhibited a wide range of biological activities. The aim of this study was to evaluate the in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid. Initially, Staphylococcus spp., derived from samples of skin and ears of dogs and cats with suspected pyoderma and otitis, were isolated and analyzed. In antimicrobial susceptibility testing against Staphylococcus spp., 77% (105/136) of the isolates were resistant to the antimicrobials tested. In the assessment of biofilm production, 83% (113/136) were classified as producing biofilm. In genetic characterization, 32% (44/136) were positive for blaZ, no isolate (0/136) was positive for the mecA gene, and 2% (3/136) were positive for the icaD gene. The in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid against Staphylococcus spp. ranged from 0.25mg/mL to 0.0019mg/mL, inhibiting bacterial growth at low concentrations. The substances were more effective against biofilm-producing bacteria (0.65mg/mL-0.42mg/mL) when compared to non-biofilm producing bacteria (2.52mg/mL-2.71mg/mL). Usnic acid and the organic extract of C. substellata can be effective in the treatment of pyoderma and otitis in dogs and cats caused by Staphylococcus spp.


2010 ◽  
Vol 6 ◽  
pp. 1079-1088 ◽  
Author(s):  
Peter C Griffiths ◽  
David W Knight ◽  
Ian R Morgan ◽  
Amy Ford ◽  
James Brown ◽  
...  

Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5–50 mg ml−1, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques – in particular small-angle neutron scattering (SANS) – have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30–40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research.


Sign in / Sign up

Export Citation Format

Share Document