Paper 17: A Self-Acting Parallel Surface Thrust Bearing

Author(s):  
A. H. Bennett ◽  
C. Ettles

This paper describes the analysis, design, and testing of a one-piece hydrodynamic thrust bearing with an initially flat surface, which has a performance similar to conventional pivoted pad thrust bearings. The leading portion of each pad is undercut allowing it to deflect elastically under load and form a wedge-shaped film. Analysis of the configuration used is particularly simple and gives good agreement with experimental results. This cantilever bearing is compared quantitatively with the plain land type and is shown to have a greatly superior performance. Comprehensive instrumentation mounted in both the rotor and the bearing gave an accurate account of the operating conditions.

1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2021 ◽  
Author(s):  
Jose Caridad ◽  
Arthur Watson ◽  
Song Shang ◽  
Eric Nguyen ◽  
Gocha Chochua

Abstract Electric submersible pump (ESP) systems use thrust bearings in the seal section to handle the thrust generated by the pump stages. Thrust bearings are subjected to harsh operating conditions, including high loads, poor oil circulation, and motor oil viscosity degradation. A less-recognized issue is gas becoming centrifugally trapped under the thrust runner. The gas may be present because of incomplete purging of air during filling, permeation of well gas into the motor oil, or gradual gasification of motor oil at high temperatures. Because thrust bearings are such critical components, it is of interest to increase their reliability, which in turn will increase ESP life. A novel gas purging system (GPS) was designed to alleviate stressors on thrust bearings, including gas accumulation, viscosity deterioration and gasification at high temperature, and low working oil volume. GPS circulates oil along with any gas that accumulates under the thrust runner up to a quiet separation chamber. Degassed oil circulates back to the thrust bearing, while accumulated gas eventually purges to the wellbore through relief valves on subsequent on/off cycles. GPS also improves viscosity and reduces gasification by cooling the oil, and it provides a greater working volume of thrust bearing oil to reduce the effects of oil deterioration. This paper details the GPS design principles as well as the optimization of the different design parameters that affect its performance conducted via computational fluid dynamics (CFD). Observations captured on a test fixture built using the final configuration are also presented, validating the intended functionality.


2003 ◽  
Vol 125 (4) ◽  
pp. 824-832 ◽  
Author(s):  
C. M. Ettles ◽  
J. Seyler ◽  
M. Bottenschein

The modernization of hydro-generators can involve the analysis of many different manufacturer’s designs of thrust bearings. Recent designs of bearing in common use are very reliable, but when failures do occur, it is often with older machines and within the first few minutes of start-up. This paper is a result of general design studies of various thrust bearing configurations subjected to transient operating conditions. It is shown that transient effects can induce an ‘overshoot’ of thermal deformation which can become unstable, leading to ‘thermal ratchetting.’ Examples are given of pads of various manufacturer’s bearings that have been subjected to this mechanism. Results from operating turbines, basic studies and measurements of the thermal bending of plates indicate that a peak deflection occurs well before thermal equilibrium is attained. The peaking phenomenon may be obscured in some designs or in cases where the run-up is gradual. The beneficial effects of using an oil-lift system during start-up are described. During shut-down it is important that the contact of hot, crowned pads against the runner be prevented. Minimum times for operation of the lift system are suggested, based on the thickness of the pads.


1989 ◽  
Vol 111 (1) ◽  
pp. 79-86
Author(s):  
R. J. Stango ◽  
R. H. Jungmann

A variational method is outlined for computing thrust bearing element loads on the basis of minimizing the potential energy of the system. The problem is formulated in terms of a polynomial displacement assumption for bearing elements. To illustrate the computational procedure, numerical studies are presented for a thrust bearing subjected to a range of load eccentricities. The variational approach is demonstrated to result in an accurate and efficient solution for bearing element load distributions. Excellent agreement is achieved when comparison is made to conventional methods of classical bearing theory for nominal load eccentricities, while superior performance is obtained when load eccentricities are considerably larger. Basic advantages of the variational formulation are discussed and an illustrative problem is presented which demonstrates extended capability of the variational method for examining the load distribution in thrust bearings.


1987 ◽  
Vol 109 (3) ◽  
pp. 395-401 ◽  
Author(s):  
A. Artiles ◽  
H. Heshmat

A method of analysis is described treating starvation in finite thrust bearing pads. A variable-size finite difference mesh is used to represent the two-dimensional temperature and pressure fields. A combination of Newton-Raphson iteration, direct iteration, and column matrix methods are used to solve for the start-of-film and minimum film thickness as well as the coupled two-dimensional energy and Reynolds equations. A parametric study describes the performance characteristics of the tapered land thrust bearing (flowrates, extent of fluid film, temperature rises, load capacity and torque) for different minimum film thicknesses and levels of starvation. This study considered variations in the geometrical parameters such as pad aspect ratio (L/R2=1/3, 1/2, 2/3) and extent of the pad (β=27, 42, and 57 deg) with an optimum taper ratio (β1/β=0.8). It is found that the effects of starvation are fairly small near the flooded condition but accelerate rapidly below the 50 percent starvation level. The start of the film (θ1) depends mostly on the level of starvation, and is essentially independent of the geometrical parameters, operating conditions or film thickness.


2005 ◽  
Vol 128 (1) ◽  
pp. 139-145 ◽  
Author(s):  
H. Zhao ◽  
F. K. Choy ◽  
M. J. Braun

This paper describes a numerical procedure for analyzing the dynamics of transient and steady state vibrations in a wavy thrust bearing. The major effects of the wavy geometry and the operating parameters on the dynamic characteristics of the bearing had been discussed in a previous paper; the present paper thus concentrates on examining the relationships between the development of the transient and steady state vibrations when operating conditions are parametrically varied. Special attention is given to the development of steady state vibrations from initial transients with comparisons and consequences to the overall system stability. Numerical based vibration signature analysis procedures are then used to identify and quantify the transient vibrations. The conclusions provide general indicators for designing wavy thrust bearings that are less susceptible to transients induced by external perturbations.


Author(s):  
Dilip Jain ◽  
Fouad Zeidan ◽  
Michael Wittmeyer

This paper describes the analysis, design, and testing of a low profile thrust bearing in a DR 990 industrial gas turbine. High unit loads and speeds, and the need to maintain low frictional power loss presented many challenges. The thrust pad design utilizes a flexure pivot, which allow near optimum performance for a wide range of speeds and loads in comparison to a fixed geometry taper land design. The use of high conductivity material for the thrust pads and directed lubrication allowed operation at lower temperatures. Finite element analysis was used to model the pad structure and pivot support. This analysis was confirmed by measuring the pad tilt using an eddy current probe. The test was conducted in a controlled thrust rig allowing accurate application and measurement of the thrust load. Precision manufacturing of the spherical seat and the application of a proprietary coating allowed better aligning capability under load. The bearing was tested in an engine at a range of speeds and loading conditions. The results are presented and compared with the existing fixed geometry bearing design. The bearing is currently running in an engine in the field and has accumulated 2,400 hours of operation with no forced outages.


Author(s):  
Thomas Hagemann ◽  
Hardwig Blumenthal ◽  
Christian Kraft ◽  
Hubert Schwarze

A theoretical algorithm for the analysis of bidirectional interaction of combined journal and thrust bearings is presented. While many theoretical and experimental investigations on the operating behavior of single journal and thrust bearings can be found only few results for combined bearings are available. However, combined bearings interact by exchanging lubricant and heat which can affect significant changes of boundary conditions compared to a single bearing application. Therefore, a novel procedure is developed to combine two separate codes for journal and thrust bearings in order to iteratively determine the coupling boundary conditions due to the special design of the entire bearing unit. The degree of interaction strongly depends on the type of lubrication. In a first step predictions are verified by measurement data for a combined bearing with a fixed-pad offset-halves journal bearing and a directed lubricated tilting-pad thrust bearing. Experiments were conducted on a high speed test rig up to sliding speeds of 107 m/s at the mean radius of the thrust bearing. As expected the interaction of the two oil films is comparably low in the investigated speed and load range for this bearing design because of the active lubrication of both bearings and the low hydraulic resistance of the thrust bearing. In order to theoretically investigate interaction of thrust and journal bearings in more details a combined bearing with fixed-pad thrust parts lubricated exclusively by the side flow of the journal bearing is studied. A variation of modeling level, pocket design of the journal part, thrust load and rotating frequency provides the following results: (i) hydraulic and energetic interaction have to be modelled in details, (ii) the axial flow resistance of the pockets strongly influences flow rates and the pressure level at the interfaces (iii) the level of interface pressure rises with increasing thrust loads and decreasing rotor speed, (iv) the axial bearing clearance is rather of minor importance for the investigated bearing. Finally, improvements in order to predict operating conditions more precisely are comprehensively discussed.


1965 ◽  
Vol 87 (4) ◽  
pp. 823-830 ◽  
Author(s):  
I. G. Currie ◽  
C. A. Brockley ◽  
F. A. Dvorak

The parallel surface thrust bearing has been studied both theoretically and experimentally. The general equations governing the laminar flow of a Newtonian fluid are presented and suitably reduced to describe the flow of lubricant through a plain collar bearing with sector pads. A computer solution of the resulting equations has been obtained in which the variations of density and viscosity with temperature are accommodated and the circumferential leakage of oil from the bearing is recognized. The resulting performance curves indicate that useful load-carrying capacities, produced by a “thermal wedge” effect, are possible with a parallel surface thrust bearing. The effect of the inlet oil temperature and bearing speed on the performance is shown. Tests were carried out on three, four, and five-pad bearings operating at 15,000 rpm. It was found that circumferential oil seals were required to insure stable operation. The results confirm that hydrodynamic lubrication may be achieved with a parallel surface thrust bearing. However, it was found that some practical limitations are imposed by high temperatures. A comparison between the theoretical load capacity of an optimum tilting pad bearing and that of a parallel surface bearing for equivalent pad dimensions, speed, and lubricant conditions revealed that the tilting pad bearing had the superior performance. Comparison of friction results with the findings of other workers shows good agreement.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. Henry ◽  
J. Bouyer ◽  
M. Fillon

An experimental study is presented with the main objective of understanding the hydrodynamic behavior of a tapered-land thrust bearing with fixed geometry. The experimental results were obtained using an original test rig designed at the “Institut Pprime.” Extensive instrumentation applied to the thrust bearing allows a precise evaluation of various characteristics such as the temperature, the film thickness and the friction torque. The results are in good agreement with the findings of other surveys in the literature. However, large differences between the measured parameters were observed from one pad to another. The authors demonstrate that this is due to the imperfections on the active surface, produced during machining. For a better understanding of the influence of irregularities in the flatness, the test was repeated with a thrust bearing manufactured using a high-precision surface polishing process. Experimental results with respect to the real geometry of the bearings were presented with both processes being compared. Interesting features, such as hot spots and a pressure peak, were identified on the pad at different supply temperatures and inlet pressures. This experimental study significantly advances the comprehension of the hydrodynamic behavior of tapered-land thrust bearings.


Sign in / Sign up

Export Citation Format

Share Document