Study of the effect of fractional composition and processing wood filler on water absorption of the composite

2015 ◽  
Vol 5 (4) ◽  
pp. 161-169
Author(s):  
Стародубцева ◽  
Tamara Starodubtseva ◽  
Аскомитный ◽  
Aleksey Askomitnyy

The result of this study is to reduce the water uptake of wood at 35% by the proposed process and the thickness of the protective layer of water uptake of wood resin and sand composite (DPPK) can be reduced to 1 %, and the polymer-sand composite may be called a water-resistant, as well as wood-based composition it is based on the wood species and does not affect the water absorption DPPK.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.



Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.



2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.



Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2057
Author(s):  
Lorena Serrano-González ◽  
Daniel Merino-Maldonado ◽  
Manuel Ignacio Guerra-Romero ◽  
Julia María Morán-del Pozo ◽  
Paulo Costa Lemos ◽  
...  

The large increase in the world population has resulted in a very large amount of construction waste, as well as a large amount of waste glycerol from transesterification reactions of acyl glycerides from oils and fats, in particular from the production of biodiesel. Only a limited percentage of these two residues are recycled, which generates a large management problem worldwide. For that reason, in this study, we used crude glycerol as a carbon source to cultivate polyhydroxyalkanoates (PHA)-producing mixed microbial cultures (MMC). Two bioproducts derived from these cultures were applied on the surface of concrete with recycled aggregate to create a protective layer. To evaluate the effect of the treatments, tests of water absorption by capillarity and under low pressure with Karsten tubes were performed. Furthermore, SEM-EDS analysis showed the physical barrier caused by biotreatments that produced a reduction on capillarity water absorption of up to 20% and improved the impermeability of recycled concrete against the penetration of water under pressure up to 2.7 times relative to the reference. Therefore, this bioproduct shown to be a promising treatment to protect against penetration of water to concrete surfaces increasing its durability and useful life.



1992 ◽  
Vol 72 (2) ◽  
pp. 468-475 ◽  
Author(s):  
N. J. Rehrer ◽  
A. J. Wagenmakers ◽  
E. J. Beckers ◽  
D. Halliday ◽  
J. B. Leiper ◽  
...  

This study was designed to examine aspects of digestive function that may limit assimilation of water and oxidation of orally ingested carbohydrate (CHO) during exercise. Eight males completed a crossover study in which each cycled on four occasions for 80 min at 70% maximal O2 consumption. Beverage was consumed at 0, 20, 40, and 60 min. Beverages were water, 4.5% glucose (4.5G), 17% glucose (17G), and 17% maltodextrin (17MD). CHO beverages contained 20 meq/l NaCl and were 13C enriched to measure exogenous CHO oxidation. Gastric (beverage) volume was measured at 80 min. Water uptake was estimated by including 2H2O in the beverage and measuring 2H accumulation in blood. Jejunal perfusion tests were conducted at rest with the same subjects and beverages. In 60 min, 1,294 +/- 31 (SE) ml were ingested; at 80 min, volumes emptied with H2O (1,257 +/- 32 ml) and 4.5G (1,223 +/- 32 ml) were greater than with 17G (781 +/- 56 ml) and 17MD (864 +/- 71 ml; P less than 0.05). Total CHO oxidized was similar with all beverages, but there was a greater increase in exogenous CHO oxidation over time with 17G and 17MD than with 4.5G; 54, 19, and 18% of the CHO ingested with 4.5G, 17G, and 17MD, respectively, was oxidized. This represents 57, 32, and 27%, respectively, of the CHO emptied from the stomach. 2H accumulation in the blood was more rapid with H2O and 4.5G than with 17G or 17MD. Net jejunal water absorption was greater from 4.5G than from water. Net water absorption was also observed from 17MD, whereas net secretion was observed with 17G.(ABSTRACT TRUNCATED AT 250 WORDS)



1969 ◽  
Vol 50 (2) ◽  
pp. 327-333
Author(s):  
F. MORIARTY

1. The pattern of water absorption by eggs of Chorthippus brunneus varies greatly between individuals. 2. The time at which water is absorbed does not have a close relationship with the stage of embryonic development. 3. Water absorption is not essential for prediapause development. 4. Eggs can only undergo blastokinesis and further development, after diapause is broken, if some water has been absorbed. 5. The rate of water loss or gain varies with the osmotic pressure of sodium chloride solutions. 6. Eggs which have started to absorb water appear to become desiccated more rapidly than eggs which have not.



2018 ◽  
Vol 53 (21) ◽  
pp. 3033-3045 ◽  
Author(s):  
MA Abd El-baky ◽  
MA Attia

The main objective of the present paper is to study the water absorption of jute–glass–carbon-reinforced epoxy composites and its subsequent effect on the in-plane shear performance of these composites. The effects of the reinforcement hybridization, stacking sequence and relative fabric amounts on the shear behavior of dry and wet conditioned composite specimens are reported and discussed. Composites have been fabricated in inter-ply configuration using the hand lay-up process. The prepared specimens have been subjected to distilled water and sea water immersion at room temperature for 60 days. Results indicated that water uptake of jute-reinforced composite and its hybrids with glass and/or carbon follows Fickian-like behavior. Water uptake induces a significant decrease in the in-plane shear strength. Hybridizing jute fabric with glass and/or carbon fabrics improves the in-plane shear properties of both dry and wet specimens. The stacking sequence and relative fabric amounts have a noticeable effect on the studied shear properties. Also, the hybrid composite with jute as facings and glass as core, JGJ, offers the most balanced set of properties on a cost-effective basis compared to the other studied hybrids.





Buildings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 18 ◽  
Author(s):  
Jeanette Orlowsky ◽  
Franziska Braun ◽  
Melanie Groh

The durability of eleven different water repellents applied on one sandstone type was studied after a long-term weathering at seven different locations in Germany. By measuring colour changes, it could be shown that the formation of black crusts, the deposition of particles and biogenic growth caused a gradual darkening as well as significant changes in total colour over time. Additionally, the water absorption behaviour was investigated with two different methods: applying a low pressure using the pipe method and capillary water absorption measurements from a wet underlay. Afterwards, the test results were analysed with four different evaluation methods: calculation of the protection degree from pipe method and capillary water absorption, determination of the velocity of water uptake during capillary water absorption and calculation of the damaged depth of the stone surface using single-sided NMR technique. The growing damaged depth leads to an increase of the water uptake velocity and to a decrease of the protection degree of the applied hydrophobing agents. Three protective agents based on isobutyltrimethoxysilane showed already after two years of outdoor weathering a clear loss of performance, which significantly increased after 30 years of exposure.





Sign in / Sign up

Export Citation Format

Share Document