scholarly journals MACHINERY LIFE INCREASE BY COMBINED STRENGTHENING

2016 ◽  
Vol 2016 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Д. Соловьёв ◽  
D. Solovev ◽  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Тарасов ◽  
...  

The reason of failure of many machine parts is contact fatigue. To increase contact-fatigue wear resistance it is necessary to create a surface layer possessing increased stress-strain properties which are formed by strengthening. The most effective methods of strengthening are those creating a surface layer with simultaneous high hardness and large reserve of plasticity. One of such methods is combined strengthening at which a surface to be strengthened is affected preliminarily by deformation shock waves forming a deep work-hardened layer and then its case hardening is carried out. As a result of this process a strengthened surface layer is formed which consists of hard uniformly strengthened carburized layer and a softer heterogeneously strengthened sublayer alternating hard and soft areas depending on streng-thening modes with shock waves. The operational researches of samples obtained by the offered combined strengthening have shown high efficiency of the method for life increase under conditions of contact cyclic loads which can increase considerably a range of machine parts to be strengthened.

2018 ◽  
Vol 1145 ◽  
pp. 154-159
Author(s):  
Xia Ding ◽  
Yu Hong Gai ◽  
Bao Min Li ◽  
Mu Sen Li

Due to the deficiencies such as shallow hardened layer and short fatigue life of the ball screws treated by the traditional induction quenching process, a new process has been developed. The new induction quenching process has four-turn induction coil. The power of the this process is 150-160kw, feeding speed 270mm/min and the spraying cooling water distance is 35mm. It has been successfully used on the Cr-Mo steel ball screw with a diameter of 80 mm. The microstructure and hardness distribution of the induction hardened layers were investigated by a metallographic microscope and a micro-hardness apparatus. The fatigue life of the ball screw was measured through a constant stress accelerated fatigue test. The degree of fatigue wear on the raceway of the ball screw was analyzed by a field emission scanning electron microscopy (FE-SEM). The experimental results showed that the microstructure and hardness distribution of the hardened layer of the Cr-Mo steel ball screw could satisfy the design requirements of contact fatigue resistance. The fatigue life was longer than the theoretical service life and there was no obvious fatigue wear on the raceway after the fatigue testing. It shows that the safety and reliability of the Cr-Mo steel ball screw fabricated through the new induction quenching process could be guaranteed in practical application.


Author(s):  
Р. Романцов ◽  
R. Romancov ◽  
И. Серых ◽  
I. Serykh ◽  
Е. Чернышева ◽  
...  

Modern technologies are the most important component for any state. Today, advanced technologies allow to create any mechanisms at the level of atoms and molecules. For the production of machines, aggregates and their individual components, new nanomaterials and nanotechnologies are used, which reduce friction repeatedly and with high efficiency, protect parts from damage, save energy and increase the reliability of machine parts as a whole. Virtually in any mechanism, some parts focus on the main load. In this study, such a detail is the steel clamping collet 65G. A method of plasma siliconizing is proposed for hardening its inner surface. The raise of this characteristics will allow to increase its service life, and therefore will ensure more reliable operation of both a separate mechanism and production as a whole. This allows the enterprise to become cost-effective and competitive. In this paper, the magnitude of the effect of the silicon atoms introduction into the surface layer of a part on wear resistance and durability is investigated. Research and subsequent processing of the results using Statistica software for statistical analysis shows an increase in the strength characteristics by 2.6 times.


Author(s):  
А. Афонин ◽  
A. Afonin ◽  
Е. Мартынов ◽  
E. Martynov ◽  
А.В. Макаров ◽  
...  

The main causes of failure of heavily loaded threads are considered. The methods of increasing the efficiency of the equipment due to the method used are proposed. It is found that improving the operational characteristics of the components of mining and metallurgical machinery can be achieved forming heterogeneous-hardened surface layer. Methods of forming heterogeneous structure by surface plastic deformation (SPD are considered). The importance of identifying the nature of the influence of parameters of heterogeneous hardened layer on the performance of machine parts is indicated. Modeling of process heterogeneous hardening of SPD of the finite element method is executed. Recommendations about application of heterogeneous hardening of SPD for hardening the heavy-duty parts are offered. It is found that the use of different methods SPD allows widely vary the degree of depth and the uniformity of the hardening of machine parts. It is found that this increase in life responsible highly loaded parts operating under fatigue loading due to hardening of the heterogeneous surface layer may reach 1.5 times or more.


2021 ◽  
Vol 49 (1) ◽  
pp. 1-20
Author(s):  
Edward Osakue ◽  
Lucky Anetor ◽  
Kendall Harris

A single expression for estimating the nominal pitting strength of steel materials, based on surface hardness, is developed from first principles for a reliability of 99% at 107 load cycles. It requires the hardness values to be measured in Vicker's hardness scale. The expression may be used for any steel material processed by hot rolling, cold drawing, quenching and tempering or case-hardening. The formulation incorporates a nominal design factor at 99% reliability which is estimated from a probabilistic model based on the lognormal probability density function. Pitting strength estimates from the expression are compared with those of American Gear Manufacturers Association (AGMA) estimates and data from other sources as indicated in Tables 3 and 4. The expression predicts lower values at low hardness but higher values at high hardness. The variance is between - 15.21% and 10.13% for through-hardened steels. For case-hardened steels, the variances range from 14.23% to 20.26% between the estimates and available data. These variances appear to be reasonable considering the many factors involved in pitting resistance. The main advantage of this study is that pitting strength of new steel materials may be estimated for initial design sizing without long and costly contact fatigue testing which of course is necessary for design validation. Also, the estimation method developed may be applied to other materials, metallic and non-metallic. Suggestions are made for estimating some pertinent pitting strength adjustment factors when considering field or service pitting strength.


2020 ◽  
pp. 339-342
Author(s):  
V.F. Bez’yazychny ◽  
M.V. Timofeev ◽  
R.V. Lyubimov ◽  
E.V. Kiselev

The theoretical justification for the hardening process of the surface layer of machine parts for combined methods of surface hardening with subsequent application of strengthening coatings, as well as reducing or increasing the fatigue limit due to the fretting process is presented.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 951
Author(s):  
Tomáš Primus ◽  
Josef Hlavinka ◽  
Pavel Zeman ◽  
Jan Brajer ◽  
Martin Šorm ◽  
...  

The lifetime and properties of cutting tools and forming moulds can be prolonged and enhanced by the deposition of hard, thin coatings. After a certain period of usage, the coating will deteriorate. Any remaining coating must be removed prior to successful recoating. Laser stripping is a fast and environmentally friendly coating removal method. In this paper, we present laser removal of two types of coatings deposited on a 1.2379 tool steel substrate, namely, an AlTiN coating with high hardness and a DLC C coating with a small coefficient of friction (COF). A powerful nanosecond laser was employed to remove the coating from the substrate with high efficiency, along with suitable residual surface roughness. Measurements were taken of surface roughness, removed depth, and working time on a stripped area of 1 cm2. The samples were evaluated under a microscope, with a 3D profilometer, and by EDS chemical analysis. Successful removal of the coating was confirmed by optical analysis, but detailed chemical characterisation showed that about 30% of the coating element may remain on the surface. Moreover, a working time of less than 7.5 s per cm2 was obtained in this study. In addition, it was shown that the application of a second low energy, high frequency laser beam pass leads to remelting of the peaks of the material and reduced surface roughness.


2007 ◽  
Vol 340-341 ◽  
pp. 525-530 ◽  
Author(s):  
Satoshi Kajino ◽  
Motoo Asakawa

The mechanical and electrical applications of fine wires (D = 0.1 mm) has become more widely spread. In general, it is well known that fine drawn wires have high tensile strength while maintaining ductility. It has been determined that a hardened layer of around 0.04 mm in depth, referred to as the “additional shear strain layer,” is generated beneath the surface layer of the wire, and this additional shear strain layer affected the tensile strength of the fine wire. As an origin of this phenomenon, it was ascertained that the microstructure of surface layer was finer than that of center layer. The purpose of this paper is to investigate the effect of die angle on the microstructure and the tensile strength of the additional shear strain layer. The tensile test was performed as the surface layer was thinned by electro-polishing, and the crystal orientation and the crystal grain were measured via EBSD. As a result, it was ascertained that die angle affected the tensile strength and crystal grain refinement of the additional shear stray layer.


2021 ◽  
Vol 316 ◽  
pp. 794-802
Author(s):  
Andrey E. Balanovsky ◽  
Van Trieu Nguyen

The Purpose of paper is to conduct studies to assess the possibility of increasing the hardness of the surface layer of steel St3 grade by plasma heating of the applied surface coating containing powder alloy PR-N80X13S2R. Mixtures of pasta were divided into 2 groups: for furnace chemical-thermal treatment and plasma surface melting. The study of the microstructure showed a difference in the depth of the saturated layer, depending on the processing method, during chemical-thermal treatment-1 mm, plasma fusion - 2 mm. The results of measuring the surface micro-hardness showed that, the obtained coating from a mixture of PR-N80X13S2R + Cr2O3 + NH4Cl has a uniform high surface hardness (31-64 HRC), from a mixture of only PR-N80X13S2R - the surface hardness varies in a wide range (15-60 HRC). The study of the microhardness of the cross section of the surface layer showed that, the diffusion region: from a mixture of powder PR-N80X13S2R + Cr2O3 + NH4Cl has uniform hardness (450-490 HV); from a mixture of PR-N80X13S2R - hardness increases in the depth of the molten region (from 300 to 600 HV), and sharply decreases in the heat affected zone (210-170 HV). The use of PR-N80X13S2R alloy powder as the main component in the composition of the paste deposited on the St3 surface during plasma treatment leads to the formation of a doped surface layer with high hardness.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexey Beskopylny ◽  
Nikolay Onishkov ◽  
Viktor Korotkin

The article is devoted to the analysis of the state of the contact surfaces of the higher kinematic pair in the general case of relative motion, that is, in the presence of rolling, sliding, and twisting, which is characteristic of Novikov’s circular-screw gears. The purpose of the work is to assess the impact of friction forces, the state of contact surfaces after tool processing, and the localization of the instantaneous contact spot on the level of contact—fatigue durability of gears. Power contact in the presence of geometric slippage of the mating surfaces leads to a significant change in the initial geometry and the mechanical properties of surface layers. In the existing methods of calculations of contact strength, the effect of running-in is investigated insufficiently, which leads to an incorrect result, especially for gear with high hardness of the teeth. In this work, the conditions of contact interaction close to the real requirements are studied on the basis of experimental material, numerical solution of the contact problem, determination of the terms of the contact areas of slip, and adhesion within the instantaneous spot. The shape of the instant contact spot has asymmetry and can be approximated by an ellipse with the introduction of a correction factor. The running-in period is of a plastic nature with cold deformation and reduction of the roughness of surfaces. As a result of the run-in period, the area of actual contact (tooth height) is increased by 2 or more times. It is not desirable to spread the area of contact at the area of adhesion that initiates the formation of pitting. The presence of defective surface area on the level of contact strength does not have significant influence, because of the running-in period, but increases the risk of spalling and brittle fracture.


2019 ◽  
Vol 10 (1) ◽  
pp. 69-79
Author(s):  
A. R. Baev ◽  
A. L Mayorov ◽  
N. V. Levkovich ◽  
M. V. Asadchaya

The propagation of a pulsed signal of a surface wave over an object with a non-uniform surface layer, obtained, for example, as a result of surface hardening, with structural damage, is accompanied by the dispersion of the velocity of the wave carrying important information about the parameters of such a layer. The aim of the work is to study the relationship between the acoustic parameters of a pulsed acoustic signal of a surface and subsurface waves and the surface layer of steel specimens hardened by high-frequency hardening, and gray iron-chill. Features of the surface and subsurface waves application for ultrasonic evaluation of physicomechanical properties of solids. Strenghtned inhomogeneous surface layer.A brief analysis of the known works on determining the depth of hardened surface layers by various methods, including high-frequency hardening, cementation, etc., is carried out. Based on the Oulder integral expression. The dependence connecting the wave velocity, its frequency, the depth of the hardened layer and the spatial distribution of hardness represented as a step with a changing slope of its side surface simulating the transition zone of the hardened layer are calculated.Using the pulse method and low-aperture transducers with a frequency of 1−3.8 MHz, the dependences of the surface wave velocity on the cutting height of a layer hardened by HDTV hardening are obtained. A comparison of experimental data and calculations of the theoretical model showed a good qualitative correspondence between them, demonstrate a high «sensitivity» of the method in relation to the nature of the change in hardness over the depth of the hardened layer. It is shown that the proposed approach is promising for solving the inverse problem of restoring the spatial distribution of hardness based on experimental data.The goniometric method was approbated to determine the dependence between amplitude-angle characteristics and depth of the surface steel layers hardened by high-frequency hardening and depth of hardened gray iron specimens layer – with chill. It is shown that the optimal angle corresponding maximum of excited surface wave amplitude in steel specimens is decreasing up to 24–26'vs. hardened depth layer. But when the tested specimens from cast iron this angle decreasing is nearly of 6°. Recommendations on the use of research results in practice are given.


Sign in / Sign up

Export Citation Format

Share Document