scholarly journals Application of waste wood of processing in-dustries in the manufacture of construction materials with specific properties

10.12737/6294 ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. 220-229
Author(s):  
Ветошкин ◽  
Yuriy Vetoshkin ◽  
Яцун ◽  
Irina Yatsun ◽  
Шишкина ◽  
...  

Currently, the share of wood based materials with specific properties in total production is significant and it is increasing every year. Cre-ation of composite materials based on wood particles with the inclusion of their design of the various components allows to obtain mate-rials with specific properties. The Department of Mechanical wood processing of USFEU de-veloped a design of PLITOTREN material with specific properties (protection against X-ray radiation). The technological process of manufacturing the material is presented, basic physical and mechanical properties of the plate are obtained, and scope of the material, taking into account the specific properties is proposed.

Author(s):  
M. Kirn ◽  
M. Rühle ◽  
H. Schmid ◽  
L.J. Gauckler

It is expected that Si-Al-O-N alloys are important high temperature construction materials. The phase diagrams for Si-Al-O-N alloys were studied systematically mainly by X-ray diffraction work (for a summary see). Different stable phases were found. For the understanding of the physical and mechanical properties it is of great interest to know for the different stable phases the microstructure and the morphology, which can be obtained by TEM observations. Results of some TEM studies are reported here utilizing not only the conventional TEM but also the lattice fringe imaging technique.Specimens of the different phases were produced as described in They were prepared for TEM observations. For high resolution work a Siemens ELMISKOP 102 (operating voltage 125 kV) was used fitted with a double tilting stage (± 45°), for conventional TEM studies the specimens were examined in an AEI EM7 high voltage EM operated at 1 MeV.


Author(s):  
Т.М. Худякова ◽  
В.Ф. Вернер ◽  
Б.К. Сарсенбаев ◽  
Н.Г. Нестренко ◽  
Г.О. Каршыга ◽  
...  

В статье рассмотрена возможность получения композиционного вяжущего на основе серы. Определены оптимальные составы и изучены физико-механические свойства образцов. А также приведены исследования по определению защитных свойств композиционных материалов от гамма и рентгеновского излучения. Приведенные результаты исследования могут служить предпосылкой для организации производства серного вяжущего и применение его в технологии получения серобетона. The article considers the possibility of producing a composite binder based on sulfur. The optimal compositions were determined and the physical and mechanical properties of the samples were studied. The research on the determination of the protective properties of composite materials against gamma and X-ray radiation is also presented. The results of the study can serve as a prerequisite for the organization of the production of sulfur binder and its application in the technology of producing sulfur concrete.


2021 ◽  
Vol 72 (2) ◽  
pp. 187-192
Author(s):  
Hasan Hüseyin Taş

The effects of fiberglass plaster mesh (FPM) as reinforcement on some physical and mechanical properties of cement bonded particleboard (CBP) were examined. Experimental CBP with and without FPM were manufactured in laboratory conditions using wood particles, cement, tap water and chemical accelerators. Two plies of FPM, manufactured using fiberglass and polyester resin, were laid within the experimental CBP. The target density of CBP was 1300 kg/m3 in the study. Three different types of chemical accelerators (CaCl2, KCl, DARASET ® 580) were used in the experiments. Properties of CBP evaluated include 2- and 24-hour - thickness swelling (TS), 2- and 24-hour - water absorption (WA) and bending stiffness (MOE) and strength (MOR). The results indicate that all the board properties tested were significantly improved by FPM application. The average MOE values of the CBP boards with FPM was two times higher than those of the boards without FPM. Dimensional stability and MOR of the CBP boards were also significantly improved with the use of FPM. FPM can be used to improve inferior properties of the CBP, so as to make it more compatible with other wood based construction materials.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


Sign in / Sign up

Export Citation Format

Share Document