scholarly journals Quality Assessment of 12 Lead ECG Signals based on Beat Detection Pattern

Author(s):  
Muhammad Yazid

Abstract—This paper proposed a new method for assessing signal quality from 12 lead ECG signal. The proposed method can be applied to incoming ECG data stream in one pass, does not involve computatively expensive filtering and does not require large memory space, which makes it especially useful for use in mobile device based ECG signal acquisition. The proposed method is verified on PhysioNet/Computing in Cardiology Chal- lenge 2011 12 lead ECG signals database, achieving a result of 89.98 percent accuracy when tested against the training dataset, and 87.4 percent accuracy when tested against the test data set.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2835 ◽  
Author(s):  
Zhongjie Hou ◽  
Jinxi Xiang ◽  
Yonggui Dong ◽  
Xiaohui Xue ◽  
Hao Xiong ◽  
...  

A prototype of an electrocardiogram (ECG) signal acquisition system with multiple unipolar capacitively coupled electrodes is designed and experimentally tested. Capacitively coupled electrodes made of a standard printed circuit board (PCB) are used as the sensing electrodes. Different from the conventional measurement schematics, where one single lead ECG signal is acquired from a pair of sensing electrodes, the sensing electrodes in our approaches operate in a unipolar mode, i.e., the biopotential signals picked up by each sensing electrodes are amplified and sampled separately. Four unipolar electrodes are mounted on the backrest of a regular chair and therefore four channel of signals containing ECG information are sampled and processed. It is found that the qualities of ECG signal contained in the four channel are different from each other. In order to pick up the ECG signal, an index for quality evaluation, as well as for aggregation of multiple signals, is proposed based on phase space reconstruction. Experimental tests are carried out while subjects sitting on the chair and clothed. The results indicate that the ECG signals can be reliably obtained in such a unipolar way.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050024
Author(s):  
Mahesh B. Dembrani ◽  
K. B. Khanchandani ◽  
Anita Zurani

The automatic recognition of QRS complexes in an Electrocardiography (ECG) signal is a critical step in any programmed ECG signal investigation, particularly when the ECG signal taken from the pregnant women additionally contains the signal of the fetus and some motion artifact signals. Separation of ECG signals of mother and fetus and investigation of the cardiac disorders of the mother are demanding tasks, since only one single device is utilized and it gets a blend of different heart beats. In order to resolve such problems we propose a design of new reconfigurable Subtractive Savitzky–Golay (SSG) filter with Digital Processor Back-end (DBE) in this paper. The separation of signals is done using Independent Component Analysis (ICA) algorithm and then the motion artifacts are removed from the extracted mother’s signal. The combinational use of SSG filter and DBE enhances the signal quality and helps in detecting the QRS complex from the ECG signal particularly the R peak accurately. The experimental results of ECG signal analysis show the importance of our proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yatao Zhang ◽  
Shoushui Wei ◽  
Yutao Long ◽  
Chengyu Liu

This study explored the performance of multiscale entropy (MSE) for the assessment of mobile ECG signal quality, aiming to provide a reasonable application guideline. Firstly, the MSE for the typical noises, that is, high frequency (HF) noise, low frequency (LF) noise, and power-line (PL) noise, was analyzed. The sensitivity of MSE to the signal to noise ratio (SNR) of the synthetic artificial ECG plus different noises was further investigated. The results showed that the MSE values could reflect content level of various noises contained in the ECG signals. For the synthetic ECG plus LF noise, the MSE was sensitive to SNR within higher range of scale factor. However, for the synthetic ECG plus HF noise, the MSE was sensitive to SNR within lower range of scale factor. Thus, a recommended scale factor range within 5 to 10 was given. Finally, the results were verified on the real ECG signals, which were derived from MIT-BIH Arrhythmia Database and Noise Stress Test Database. In all, MSE could effectively assess the noise level on the real ECG signals, and this study provided a valuable reference for applying MSE method to the practical signal quality assessment of mobile ECG.


2019 ◽  
Vol 9 (22) ◽  
pp. 4968 ◽  
Author(s):  
Dengyong Zhang ◽  
Shanshan Wang ◽  
Feng Li ◽  
Jin Wang ◽  
Arun Kumar Sangaiah ◽  
...  

Electrocardiographic (ECG) signal is essential to diagnose and analyse cardiac disease. However, ECG signals are susceptible to be contaminated with various noises, which affect the application value of ECG signals. In this paper, we propose an ECG signal de-noising method using wavelet energy and a sub-band smoothing filter. Unlike the traditional wavelet threshold de-noising method, which carries out threshold processing for all wavelet coefficients, the wavelet coefficients that require threshold de-noising are selected according to the wavelet energy and other wavelet coefficients remain unchanged in the proposed method. Moreover, The sub-band smoothing filter is adopted to further de-noise the ECG signal and improve the ECG signal quality. The ECG signals of the standard MIT-BIH database are adopted to verify the proposed method using MATLAB software. The performance of the proposed approach is assessed using Signal-To-Noise ratio (SNR), Mean Square Error (MSE) and percent root mean square difference (PRD). The experimental results illustrate that the proposed method can effectively remove noise from the noisy ECG signals in comparison to the existing methods.


Author(s):  
Fabian Castaño ◽  
Alher Mauricio Hernández

Wearable vital signs monitoring and specially the electrocardiogram have taken important role due to the information that provide about high-risk diseases, it has been evidenced by the needed to increase the health service coverage in home care as has been encouraged by WHO. Some wearables devices have been developed to monitor the ECG in which the location of the measurement electrodes is modified respect to the Einthoven model. However, mislocation of the electrodes on the torso can lead to the modification of acquired signals, diagnostic mistakes and misinterpretation of the information in the signal. This work presents a volume conductor evaluation and an ECG signal waveform comparison when the location of electrodes is changed, to find a electrodes’ location that reduces distortion of interest signals. In addition, effect of motion artifacts and electrodes’ location on the signal acquisition are evaluated. A group of volunteers was recorded to obtain ECG signals, the result was compared with a computational model of the heart behavior through the EA ECG, DTW and SNR methods to quantitatively determine the signal distortion. It was found that while the Einthoven method is followed, it is possible to acquire the ECG signal from the patient’s torso or back without a significant difference, and the electrodes position can be moved 6cm at most from the suggested location by the Einthoven triangle in Mason-Likar’s method.


Author(s):  
Shila Dhande

The system “LabVIEW based ECG signal acquisition and analysis” is developed to assist patients and doctors in health care. An arrhythmia is an abnormal heart rhythm. It may be so brief that it doesn’t change the overall heart rate, but it can cause the heart rate to be too slow or too fast. When arrhythmias are severe or last long enough, the heart may not be able to pump enough blood to the body. This can cause the patient to feel tired, lightheaded or may make him pass out. It can also cause death. Before treatment, it’s important for the doctor to know where an arrhythmia starts in the heart and whether it’s abnormal. An electrocardiogram (ECG) is often used to diagnose arrhythmias. “LabVIEW based ECG signal acquisition and analysis” is meant to acquire ECG signals from the patient and analyze it to detect and classify its anomalies and abnormalities. This is achieved by extracting amplitudes and durations of parameters of ECG waveform such as P wave, QRS complex, RR interval, and PR durations. These parameters are compared with the normal values to determine the type of abnormality- Tachycardia or Bradycardia. The database of the patient is maintained for further use by the doctor. The objective of LabVIEW based ECG signal acquisition and analysis aims at acquiring and analyzing temporal parameters of ECG signal such as P wave, QRS complex, RR interval, PR durations and amplitudes of the P wave, ST wave, identification of cardiac arrhythmia using LabVIEW. The research work has helped us to explore various features of LabVIEW like signal processing and automated database generation.


This Analysis of ECG signals is crucial for early detection of cardiac ailments. With the sensors becoming more and more predominant and available in all wearable forms for measuring multiple physiological parameters, the importance of algorithms to detect the abnormalities are also gaining importance. The physiological signals are measured through noninvasive means unless very critical and hence are very weak in nature. Bio-amplifiers are applied during signal acquisition. The signals are weak and hence susceptible for the electrical disturbances in the environment. Selection of Filtering techniques is very important and is decided by many factors. This paper is a survey which presents digital filtering techniques the researchers have applied in the last decade. The study reveals the different types FIR/IIR filters the researchers have worked and also the performance metrics adapted by the researchers electronic document is a “live” template and already.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


2021 ◽  
Vol 11 (13) ◽  
pp. 5908
Author(s):  
Raquel Cervigón ◽  
Brian McGinley ◽  
Darren Craven ◽  
Martin Glavin ◽  
Edward Jones

Although Atrial Fibrillation (AF) is the most frequent cause of cardioembolic stroke, the arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent. Automated detection of AF in ECG signals is important for patients with implantable cardiac devices, pacemakers or Holter systems. Such resource-constrained systems often operate by transmitting signals to a central server where diagnostic decisions are made. In this context, ECG signal compression is being increasingly investigated and employed to increase battery life, and hence the storage and transmission efficiency of these devices. At the same time, the diagnostic accuracy of AF detection must be preserved. This paper investigates the effects of ECG signal compression on an entropy-based AF detection algorithm that monitors R-R interval regularity. The compression and AF detection algorithms were applied to signals from the MIT-BIH AF database. The accuracy of AF detection on reconstructed signals is evaluated under varying degrees of compression using the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm. Results demonstrate that compression ratios (CR) of up to 90 can be obtained while maintaining a detection accuracy, expressed in terms of the area under the receiver operating characteristic curve, of at least 0.9. This highlights the potential for significant energy savings on devices that transmit/store ECG signals for AF detection applications, while preserving the diagnostic integrity of the signals, and hence the detection performance.


2021 ◽  
Vol 11 (4) ◽  
pp. 1591
Author(s):  
Ruixia Liu ◽  
Minglei Shu ◽  
Changfang Chen

The electrocardiogram (ECG) is widely used for the diagnosis of heart diseases. However, ECG signals are easily contaminated by different noises. This paper presents efficient denoising and compressed sensing (CS) schemes for ECG signals based on basis pursuit (BP). In the process of signal denoising and reconstruction, the low-pass filtering method and alternating direction method of multipliers (ADMM) optimization algorithm are used. This method introduces dual variables, adds a secondary penalty term, and reduces constraint conditions through alternate optimization to optimize the original variable and the dual variable at the same time. This algorithm is able to remove both baseline wander and Gaussian white noise. The effectiveness of the algorithm is validated through the records of the MIT-BIH arrhythmia database. The simulations show that the proposed ADMM-based method performs better in ECG denoising. Furthermore, this algorithm keeps the details of the ECG signal in reconstruction and achieves higher signal-to-noise ratio (SNR) and smaller mean square error (MSE).


Sign in / Sign up

Export Citation Format

Share Document