Fabrication and characterisation of a wound dressing composed of polyvinyl alcohol and quince seed mucilage

2021 ◽  
Vol 30 (Sup9a) ◽  
pp. XIIIi-XIIIx
Author(s):  
Mahshid Jafari ◽  
Hossein Baniasadi ◽  
Alireza Rezvanpour ◽  
Marzieh Lotfi

Objective: Providing a suitable environment to improve the healing process is the main target of wound dressing that also protects the wound from additional harms. In the present study, fabrication and characterisation of a new kind of electrospun wound dressing composed of polyvinyl alcohol (PVA) and quince seed mucilage (QSM) is reported. Method: QSM was extracted from quince seeds, purified, freeze-dried and used to produce aqueous solutions containing different amounts of PVA and QSM. The wound dressings were fabricated via the electrospinning method and their characteristics were investigated with scanning electron microscope (SEM) images, Fourier transform infrared (FTIR) spectra, tensile and swelling test, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cytotoxicity assay against fibroblast cells. Results: SEM images confirmed that proper, uniform, non-oriented nanofibres with an average diameter in the range of 60–240nm, depending on the QSM content had been fabricated. The tensile test showed that with increasing QSM content, the tensile strength of fibre increased while elongation at break was decreased, which was consistent with SEM images where the diameter of samples decreased by increasing QSM content. MTT assay showed significant biocompatibility against fibroblast cells; however, it was increased by increased QSM proportion. In addition, SEM images supported the proper adhesion of fibroblast cells on the sample one day after culturing. Conclusion: Overall, the findings of the current study support the potential of PVA/QSM nanofibres as a proper candidate for biomedical applications, especially as a wound dressing.

2021 ◽  
pp. 088532822199601
Author(s):  
Linying Shi ◽  
Fang Lin ◽  
Mou Zhou ◽  
Yanhui Li ◽  
Wendan Li ◽  
...  

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds i n vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2407 ◽  
Author(s):  
Alexa-Maria Croitoru ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Natalia Mihailescu ◽  
Ecaterina Andronescu ◽  
...  

The interest in wound healing characteristics of bioactive constituents and therapeutic agents, especially natural compounds, is increasing because of their therapeutic properties, cost-effectiveness, and few adverse effects. Lately, nanocarriers as a drug delivery system have been actively investigated and applied in medical and therapeutic applications. In recent decades, researchers have investigated the incorporation of natural or synthetic substances into novel bioactive electrospun nanofibrous architectures produced by the electrospinning method for skin substitutes. Therefore, the development of nanotechnology in the area of dressings that could provide higher performance and a synergistic effect for wound healing is needed. Natural compounds with antimicrobial, antibacterial, and anti-inflammatory activity in combination with nanostructured fibers represent a future approach due to the increased wound healing process and regeneration of the lost tissue. This paper presents different approaches in producing electrospun nanofibers, highlighting the electrospinning process used in fabricating innovative wound dressings that are able to release natural and/or synthetic substances in a controlled way, thus enhancing the healing process.


2011 ◽  
Vol 194-196 ◽  
pp. 648-651 ◽  
Author(s):  
Natthan Charernsriwilaiwat ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

Electrospinning is a technique use to fabricate ultrafine fibers with diameters in the nanometer range. The electrospun fiber mats have high potentials for many applications, due to their high surface area to volume, high porosity and small pore size. In this study, chitosan-ethylenediaminetetraacetic acid (CS-EDTA)/polyvinyl alcohol (PVA) blend nanofibers were successfully prepared using electrospinning techniques without organic solvent. CS was dissolved in EDTA aqueous solution and then blended with PVA solution at various weight ratios. Physicochemical properties of CS-EDTA/PVA solution such as viscosity, conductivity and surface tension were investigated. The morphology and diameter of the electrospun fiber mats were analyzed by using scanning electron microscopy (SEM). The composite structure was characterized by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FT-IR). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of the blend. Nanofibers were obtained when the CS-EDTA content was less than 50%wt. The average diameter of the nanofibers was 119-223 nm, and this average diameter decreased with increasing CS-EDTA content. In summary, these CS electrospun nanofiber mats may be proper for the drug delivery or wound dressing application.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Zahid Mahmood ◽  
Anne-Marie Salisbury ◽  
Rui Chen ◽  
Stephen Rimmer ◽  
Steven Percival

A medical device comprising of biomaterials responsive to biochemical stimuli: channel for indicating the infective states of wounds and ensuring delivery of smart antimicrobial and antibiofilm agents to promote tissue regeneration and healing. The importance of providing diagnostic wound dressings that can inform healthcare professionals on the state of infection within wounds but also provide some of the treatment required in response to at risk or infected wounds is of key interest. The aim is to investigate an innovative proof of concept diagnostic and detection system, an intelligent hydrogel wound dressing that responds to specific biochemical stimuli in wounds (MMPs and pH) enabling the selective and triggered release of antibiofilm and antimicrobial agents (‘Detect and Treat’)to the trauma site. The dressing is made of a sterile alginate core material covered in a biocompatible dry or hydrated peptide-polymer-complex film and may include a fluorescent dye which upon release during the wound healing process indicates when a change in dressing is necessary. Efficacy studies of the hydrogel dressing were performed within a drip-flow bioreactor in which regression of Pseudomonas aeruginosa biofilm was observed. A 5-log reduction in biofilm was observed in comparison to an untreated control biofilm. The hydrogel dressing indicated a clear response when in contact with biofilms produced only by pathogenic strains of bacteria when analysed. This further confirmed the adequate release and function of the antimicrobial and antibiofilm agents within the peptide-polymer-complex formulation of the hydrogel wound dressing.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


2021 ◽  
Vol 11 (9) ◽  
pp. 890
Author(s):  
Andreea Barbu ◽  
Bogdan Neamtu ◽  
Marius Zăhan ◽  
Gabriela Mariana Iancu ◽  
Ciprian Bacila ◽  
...  

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.


Cosmetics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anton Shabunin ◽  
Vladimir Yudin ◽  
Irina Dobrovolskaya ◽  
Evgeny Zinovyev ◽  
Viktor Zubov ◽  
...  

An electrospinning technique was used for the preparation of a bilayered wound dressing consisting of a layer of aliphatic copolyamide nanofibers and a layer of composite nanofibers from chitosan and chitin nanofibrils filler. Processed dressings were compared with aliphatic copolyamide nanofiber-based wound dressings and control groups. Experimental studies (in vivo treatment of third-degree burns with this dressing) demonstrated that almost complete (up to 97.8%) epithelialization of the wound surface had been achieved within 28 days. Planimetric assessment demonstrated a significant acceleration of the wound healing process. Histological analysis of scar tissue indicated the presence of a significant number of microvessels and a low number of infiltrate cells. In the target group, there were no deaths or purulent complications, whereas in the control group these occurred in 25% and 59.7% of cases, respectively—and, in the copolyamide group, 0% and 11%, respectively. The obtained data show the high efficiency of application of the developed composite chitosan‒copolyamide wound dressings for the treatment of burn wounds.


2016 ◽  
Vol 880 ◽  
pp. 11-14 ◽  
Author(s):  
Ida Sriyanti ◽  
Dhewa Edikresnha ◽  
Muhammad Miftahul Munir ◽  
Heni Rachmawati ◽  
Khairurrijal

Composite nanofibers of polyvinylpyrrolidone (PVP) and Garcinia mangostana L. extract (GME) have been synthesized through electrospinning method for application in drug delivery systems. The precursor solution of 10 mL PVP 10% w/w and GME 2% w/w was then electrospun collected at the rotating collector at the following optimum parameters: a voltage of 15 kV, a collector-nozzle distance of 12 cm, and a flow rate of 1 mL/hour. SEM images showed that the average diameters were 476 nm and 690 nm for the PVP and PVP-GME composite nanofibers, respectively. To some degree, the addition of GME into PVP nanofibers increased the average diameter size of nanofibers. Moreover, the release studies, it was shown that 80% of the GME was released within 30 minutes. Therefore, the PVP-GME composite nanofibers can be applied as the drug delivery systems.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 120 ◽  
Author(s):  
Marta Nardini ◽  
Sara Perteghella ◽  
Luca Mastracci ◽  
Federica Grillo ◽  
Giorgio Marrubini ◽  
...  

Standard treatments of chronic skin ulcers based on the direct application of dressings still present several limits with regard to a complete tissue regeneration. Innovative strategies in tissue engineering offer materials that can tune cell behavior and promote growth tissue favoring cell recruitment in the early stages of wound healing. A combination of Alginate (Alg), Sericin (SS) with Platelet Lysate (PL), as a freeze-dried sponge, is proposed to generate a bioactive wound dressing to care skin lesions. Biomembranes at different composition were tested for the release of platelet growth factors, cytotoxicity, protective effects against oxidative stress and cell proliferation induction. The highest level of the growth factors release occurred within 48 h, an optimized time to burst a healing process in vivo; the presence of SS differently modulated the release of the factors by interaction with the proteins composing the biomembranes. Any cytotoxicity was registered, whereas a capability to protect cells against oxidative stress and induce proliferation was observed when PL was included in the biomembrane. In a mouse skin lesion model, the biomembranes with PL promoted the healing process, inducing an accelerated and more pronounced burst of inflammation, formation of granulation tissue and new collagen deposition, leading to a more rapid skin regeneration.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1211
Author(s):  
Vladyslav Vivcharenko ◽  
Michal Wojcik ◽  
Krzysztof Palka ◽  
Agata Przekora

There are many modern wound dressings that have promising properties for repairing skin damage. However, due to various types of wounds and the problems they cause, there is still a great demand for new, effective healing strategies. The aim of this study was to create superabsorbent wound dressing made of marine-derived polysaccharides (agarose and chitosan) using the freeze-drying method. The secondary goal was its comprehensive evaluation for potential use as an external superabsorbent bandage for wounds with high exudation. Due to the well-known positive effect of ascorbic acid (vitamin C) on the healing process, biomaterial enriched with vitamin C was prepared and compared to the variant without the addition of ascorbic acid. It was shown that the produced foam-like wound dressing had a very porous structure, which was characterized by hydrophilicity, allowing a large amount of human fluids to be absorbed. According to in vitro tests on human fibroblasts, biomaterial was nontoxic and supportive to cell proliferation. Vitamin C-enriched dressing also had the ability to significantly reduce matrix metalloproteinase-2 production and to promote platelet-derived growth factor-BB synthesis by fibroblasts, which is desired during chronic wound treatment. The material has features of the eco-friendly wound care product since it was made of naturally-derived polysaccharides and was proved to be biodegradable. Importantly, despite degradable character, it was stable in the chronic and infected wound microenvironment, maintaining high integrity after 8-week incubation in the enzymatic solutions containing lysozyme and collagenases. The obtained results clearly showed that developed biomaterial possesses all necessary features of the external dressing for the management of exudate from both acute and chronic non-healing wounds.


Sign in / Sign up

Export Citation Format

Share Document