scholarly journals Green Synthesis of Gold Nanoparticles: A Novel, Environment-Friendly, Economic, Safe Approach

2021 ◽  
Vol 14 (4) ◽  
pp. 2041-2046
Author(s):  
Niladry Sekhar Ghosh ◽  
Ekta Pandey ◽  
Madan Kaushik ◽  
Jai Prakash Kadian ◽  
Bhupendra Chauhan ◽  
...  

Nanoparticles can be synthesised using a variety of methods. These approaches, on the other hand, are connected with the development of undesired byproducts that are both harmful and expensive. As a result, several attempts are being undertaken to develop unique, cost-effective, safe, and dependable "green" techniques for producing desirable nanoparticles. To develop a novel, environment-friendly, economic, safe approach to the synthesis of gold nanoparticles via the biological entity. Addition of aqueous gold chloride solution to the microwave-exposed aqueous extracellular Cassia tora leaf extract yielded poly shaped gold nanoparticles. The UV-vis. spectroscopic investigations are led to notice and affirm the formation of nanoparticles. FTIR studies are performed to affirm the role of a biomolecule in stabilizing the nanoparticles. X-beam diffraction study is utilized to affirm the crystalline nature of nanoparticles. The elemental characterization of the samples is regulated by EDX studies. The size and morphology of the synthesized nanoparticles are explored using HR-TEM analysis and FESEM. It is seen that the flavonoids which are separated during microwave warming of extracellular solution of the cassia tora leaves are liable for the biosynthesis of gold nanoparticles. The nanoparticle was noted to be well dispersed and polyshaped with a 20-60 nm range. The leaf extract based preparation of AuNP is more gainful since leaf is used instead of microorganism as many of the issues like pathogenicity, procedural maintenance of hygiene of cell culture and labor efforts can be overcome. The presence of flavonoids in the leaf was discovered by the examination of produced nanoparticles, suggesting that they may have fulfilled both reduction and stabilisation activities. The presented approach can be inferred to be cost-effective, environmentally friendly, and capable of manufacturing nanoparticles with desired physical and pharmacological properties.

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


2010 ◽  
Vol 7 (4) ◽  
pp. 1334-1339 ◽  
Author(s):  
Balaprasad Ankamwar

The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience for biomedical application. Low cost of synthesis and non toxicity are main features make it more attractive potential option for biomedical field and elsewhere. Here, we report the synthesis of gold nanoparticles in aqueous medium usingTerminalia catappa(Almond) leaf extract as the reducing and stabilizing agent. On treating chloroauric acid solutions withTerminalia catappa(TC) leaf extract rapid reduction of chloroaurate ions is observed leading to the formation of highly stable gold nanoparticles in solution. TEM analysis of the gold nanoparticles indicated that they ranged in size from 10 to 35 nm with average size of 21.9 nm.


Author(s):  
Sharmila C ◽  
Ranjith Kumar R ◽  
Chandar Shekar B

 Objective: Synthesis of silver nanoparticles (AgNPs) using a simple, cost-effective and environmentally friendly green route approach and to study the antibacterial activity of AgNPs against human pathogens.Methods: Green route approach is used to synthesize AgNPs using Psidium guajava leaf extract. Fourier transform infrared (FTIR) was used to identify the presence of the functional group. X-ray diffraction (XRD) was used to analyze the structure of prepared AgNPs. Energy dispersive X-ray was used to the characteristic to the composition of the prepared nanoparticles. Size and morphology of the prepared AgNPs were investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Antibacterials efficiency of prepared AgNPs was tested against Escherichia coli and Staphylococcus aureus by well diffusion methods.Results: FTIR study shows the presence of different functional groups present in the leaves mediated AgNPs. The XRD studies yield diffraction peaks corresponding to face-centered cubic structure of Ag crystals. Spherical shaped AgNPs with a particle size of about ~55 nm were evidenced using FESEM and TEM analysis. Energy dispersive spectrum of the synthesized AgNPs confirms the presence of silver in the prepared nanoparticles. From UV-VIS analysis it is shown that the absorption band was red-shifted from 430 nm to 456 nm. The prepared AgNPs shows good antibacterial activity against E. coli and S. aureus.Conclusions: P. guajava leaf extract is a potential reducing agent to synthesize AgNPs. The green synthesis approach provides cost-effective and eco-friendly nanoparticles, which could be used in biomedical applications.


2018 ◽  
Vol 19 (2) ◽  
pp. 72
Author(s):  
Iwan Syahjoko Saputra ◽  
Yoki Yulizar ◽  
Sudirman Sudirman

Gold Nanoparticles (GoldNPs) successful was performed using HAuCl4 precursor as Au3+ ion source with 7x10-4 M concentration. The research aims to knows effect of concentration variation of Imperata cylindrica L leaf extract on synthesis process of gold nanoparticles. The research used of green synthesis method. Colloid of nanoparticles which is formed in analyzed using UV-Vis Spectrophotometer, FT-IR Spectroscopy, PSA, PZC, XRD and TEM. The results of synthesis showed the best concentration of Imperata cilindrica L leaf extract at 3,46%, happen a shift of wavelength at UV-Vis from 216 nm to 530 nm with 1.779 absorbance value. The PSA analysis showed a particle size of 51.87 nm and a PZC value of -19.2 mV. The result of FT-IR indicated a shift of wavenumber in the hidroxyl group from 3354 cm-1 to 3390 cm-1 and showed a interaction of hydroxyl group at imperata cylindrica L leaf extract with Au3+ ion. TEM analysis shows the morphology of GoldNPs that spherical shape with a particle size of 20 nm. XRD calculation results show crystallite size of gold nanoparticles is 15.47 nm.


2019 ◽  
Vol 4 (2) ◽  
pp. 112-124
Author(s):  
Edward K.B. Bragais ◽  
Lynne M. Labaclado

Background and Objective: In this study, dudoa (Hydnocarpus alcalae C.DC.) leaf extract was used as a reducing and stabilizing agent in a novel one-step green synthesis of silver nanoparticles. Dudoa is an endemic plant in the province of Legazpi, Philippines and its seed oil was used as an anti-leprotic drug. Method: Therefore, the dudoa leaf extract was used to synthesize silver nanoparticles. Moreover, optimization of various parameters greatly affected the size and morphology of the synthesized AgNPs as indicated by the Ultraviolet-visible (UV-vis) spectrophotometry. The synthesized AgNPs were further characterized using spectral analyses such as XRD, EDX, SEM, FT-IR, TGA and DLS. The antimicrobial activity of synthesized AgNPs was also demonstrated. Results and Discussions: The synthesized AgNPs exhibited a diffraction pattern and a particle size ranging from 22-48 nm. The AgNPs also showed complete inhibitory and mild reactivity against representative pathogenic gram-positive (S.aureus) and gram-negative (E.coli) bacteria. Conclusion: Silver nanoparticles were successfully synthesized using H. alcalae leaf extract. Furthermore, this green synthesis approach appeared to be cost-effective, non-toxic, and eco-friendly which is a best alternative to the conventional chemical methods.


2019 ◽  
Vol 10 (4) ◽  
pp. 3711-3716
Author(s):  
Niladry Sekhar Ghosh ◽  
Ritu M Giilhotra ◽  
Ranjit Singh ◽  
Angshu Banerjee

A range of methods is available for the synthesize nanoparticles. However, these methods are associated with the production of undesirable byproducts which are quite hazardous and high costs. Thus a number of efforts are being made to develop novel cost-effective safe & reliable "green" procedures which caned produce desired nanoparticles. In this study, we caned successfully develop a green synthesis method for preparation of silver nanoparticles using Desmodium gangeticum leaf extract as reducing & capping agents. The method was found a quite effective inversion of silver ions to silver nanoparticles in a short interval of time. The developed nanoparticles exhibited Surface plasmon resonance at around 500 nm. The particles are nearly spherical, and the size ranged between 16-64nm. The average size was noted to be around 40 nm. The nanoparticles were characterized for their morphology using UV-vis, TEM, FTIR analysis and FESEM. The developed method carries the advantage of the completion of the reaction in a short time. The crystalline nature of the synthesize nanoparticles was assessed & confirm by XRD & EDX Studies. From FTIR studies, it can be understood that the flavonoids could be adsorbed on the metal surface by interaction with carbonyl groups. The process was carried out in the environment-friendly condition.


Author(s):  
Amel Taha ◽  
Mustaffa Shamsuddin

Nanomaterials are attracting a lot of attention nowadays as they show different chemical and physical properties that are dependent on their size and shape. Different techniques have been used for synthesis metal nanoparticles but the use of plants for synthesis of nanoparticles could be advantageous over other environmentally methods as this eliminates the cost and the non toxicity is main feature. Here a simple biosynthesis approach was applied and gold nanoparticles were synthesized by using psidium guajava leaf extract as reducing and capping agent. Two different parameters were studied which are the metal ion concentration and volume of plant broth. The synthesis of gold nanoparticles was also monitored as function of reaction time. The formation of gold nanoparticles was monitored by UV-Vis spectrophotometer and the size of particles was confirmed by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) techniques. TEM analysis showed that the AuNPs were mostly spherical in shape with an average size of 15 nm. Fourier Transform Infrared (FTIR) spectroscopy that the active biomolecules present in the Psidium guajava leaf extract act as capping and stabilizing agent for the AuNPs.


Author(s):  
Sharmila C ◽  
Ranjith Kumar R ◽  
Chandar Shekar B

 Objective: Synthesis of silver nanoparticles (AgNPs) using a simple, cost-effective and environmentally friendly green route approach and to study the antibacterial activity of AgNPs against human pathogens.Methods: Green route approach is used to synthesize AgNPs using Psidium guajava leaf extract. Fourier transform infrared (FTIR) was used to identify the presence of the functional group. X-ray diffraction (XRD) was used to analyze the structure of prepared AgNPs. Energy dispersive X-ray was used to the characteristic to the composition of the prepared nanoparticles. Size and morphology of the prepared AgNPs were investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Antibacterials efficiency of prepared AgNPs was tested against Escherichia coli and Staphylococcus aureus by well diffusion methods.Results: FTIR study shows the presence of different functional groups present in the leaves mediated AgNPs. The XRD studies yield diffraction peaks corresponding to face-centered cubic structure of Ag crystals. Spherical shaped AgNPs with a particle size of about ~55 nm were evidenced using FESEM and TEM analysis. Energy dispersive spectrum of the synthesized AgNPs confirms the presence of silver in the prepared nanoparticles. From UV-VIS analysis it is shown that the absorption band was red-shifted from 430 nm to 456 nm. The prepared AgNPs shows good antibacterial activity against E. coli and S. aureus.Conclusions: P. guajava leaf extract is a potential reducing agent to synthesize AgNPs. The green synthesis approach provides cost-effective and eco-friendly nanoparticles, which could be used in biomedical applications.


2013 ◽  
Vol 8 (3-4) ◽  
pp. 469-478 ◽  
Author(s):  
Sandip S. Magdum ◽  
Gauri P. Minde ◽  
Upendra S. Adhyapak ◽  
V. Kalyanraman

The aim of this work was to optimize the biodegradation of polyvinyl alcohol (PVA) containing actual textile wastewater for a sustainable treatment solution. The isolated microbial consortia of effective PVA degrader namely Candida Sp. and Pseudomonas Sp., which were responsible for symbiotic degradation of chemical oxidation demand (COD) and PVA from desizing wastewater. In the process optimization, the maximum aeration was essential to achieve a high degradation rate, where as stirring enhances further degradation and foam control. Batch experiments concluded with the need of 16 lpm/l and 150 rpm of air and stirring speed respectively for high rate of COD and PVA degradation. Optimized process leads to 2 days of hydraulic retention time (HRT) with 85–90% PVA degradation. Continuous study also confirmed above treatment process optimization with 85.02% of COD and 90.3% of PVA degradation of effluent with 2 days HRT. This study gives environment friendly and cost effective solution for PVA containing textile wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document