scholarly journals Influence of Surface Modification on Physical, Mechanical, and Morphological Properties of Natural Single Areca catechu Fiber

2019 ◽  
Vol 35 (2) ◽  
pp. 605-610
Author(s):  
Raghu Patel G. Ranganagowda ◽  
Sakshi Shantharam Kamath ◽  
Ravi Kumar Chandrappa ◽  
Basavaraju Bennehalli

In the present study, fibers extracted from empty areca fruit were surface modified by giving chemical treatment with 2% NaOH solutionat laboratory temperature to investigate the effect of alkali treatment onphysical, mechanical, and morphological properties of arecafiber. Tensile strength and Young’s modulus of areca fiber found to decrease with alkali treatment. But improvement in elongation at break of the fiber was observed for alkali treated fiber due to elimination of lignin and hemicelluloses from the fiber surface upon alkali treatment. The results proved that the natural areca fiber is a potential alternative source for strengthening the polymer composite industries.

2013 ◽  
Vol 701 ◽  
pp. 239-242
Author(s):  
L. Yusriah ◽  
S.M. Sapuan ◽  
E.S. Zainudin ◽  
Jaafar Mustapha Mariatti

The tensile properties of untreated and alkali treated betel nut husk fiber were investigated using single fiber tensile test method and the fiber structures were observed using SEM technique. The alkali treatment aids in the removal of lignin, hemicellullose and non-cellulosic components such as wax and pectin on the betel nut husk fiber surface, which yields bigger lumen size and rougher betel nut husk fiber surface. The alkali treatment enhanced the elongation at break of betel nut husk fiber but at the expense of tensile strength and Young's modulus.


Author(s):  
Wijang Wisnu Raharjo ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan ◽  
Agus Suprapto

The improvement of mechanical properties of cantala fiber and its composites. Treatments including alkali, silane, and the combination of both were carried out to modify the fiber surface. The influence of chemical treatments on fiber properties such as the degree of crystallinity and tensile strength was investigated. A variety of short cantala fiber reinforced rHDPE composites were produced by hot press, and the effect of fiber treatment on the flexural strength of composites was observed. SEM observations also carried out to highlight these changes. The result shows that alkali treatment improves tensile strength and tensile modulus of alkali treated fiber (NF12) which was predicted as a result of the enhancement of the cellulose crystallinity. In contrast, the tensile strength and tensile modulus of silane (SF05) and alkali-silane treated fiber (NSF05) decreased compared to untreated fiber (UF) which is caused by the addition of amorphous material. The tensile strength of alkali-silane treated fiber (NSF05) was lower than alkali treated fiber (NF12), but the composites prepared with NSF05 showed the highest increment of flexural strength of 25.9%. This may be due the combination of alkali and silane treatment helped in the better formation of fiber-matrix interface adhesion.


2018 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Cokorda putri Kusuma kencanawati ◽  
I Ketut Gede Sugita ◽  
NPG Suardana ◽  
I Wayan Budiasa Suyasa

Makalah ini menganalisis pengaruh perlakukan alkali dan tanpa perlakukan alkali terhadap karakateristik fisik, morfologi dan sifat mekanik serat kulit buah pinang (areca Catechu L.). Selama ini pemanfaatan limbah pertanian belum dilakukan secara maksimal, sehingga dapat menimbulkan pencemaran terhadap lingkungan. Serat kulit buah pinang (Areca Husk Fiber/AHF) selama ini hanya dipergunakan sebagai bahan bakar biomassa dan media tanam sedangkan untuk pemanfaatan lain belum ada sama sekali. AHF diberi perlakukan NaOH 2,5%, 5%, 7,5% dan 10% dengan waktu perendaman 2 jam pada temperatur kamar, untuk mengetahui karakteristik fisik AHF maka dilakukan pengukuran panjang dan diameter serat, pengujian densitas, pengujian kadar air dan moisture sedangkan untuk mengetahui karakteristik mekanik dilakukan pengujian tarik serat tunggal sesuai dengan ASTM D 3379. Dari penelitian ini diketahui bahwa diameter AHF mengalami pengurangan diameter akibat perlakukan alkali, hal ini terkait dengan hilangnya kandungan lignin, pektin dan wax. Densitas AHF menurun dengan meningkatan prosentase NaOH bila dibandingkan dengan AHF tanpa perlakukan NaOH. Kekuatan tarik bervariasi dengan adanya perlakuan alkali.  Kekuatan tarik AHF tertinggi pada serat yang mengalami perlakukan NaOH 5% yaitu sebesar 165 Mpa dan kekuatan tarik terendah pada AHF dengan perlakuan Alkali 10% yaitu sebesar 137 MPa . This paper analyzes the effect of alkali and non-alkali treatments on the physical characteristics, morphology and mechanical properties of betel nut huks fiber (areca Catechu L.). the used of agricultural waste has not been done optimally, causing environmental pollution. Areca Husk Fiber (AHF) only used as biomass fuel and planting medium, while for the other uses it has not existed. AHF was given 2.5%, 5%, 7.5% and 10% NaOH treatment with 2 hours immersion at room temperature, to known the physical characteristics of AHF then measured the length and diameter of fiber, density test, water content and moisture test. Mechanical characteristics of single fiber tensile testing in accordance with ASTM D 3379. From this study that known the diameter of AHF has a reduction in diameter due to alkaline treatment, this is related to loss of lignin, pectin and wax content. The density of AHF decreases with the percentage increase of NaOH when compared with AHF without the treatment of NaOH. Tensile strength varies with alkaline treatment. The highest AHF tensile strength in treated fibers was 5% NaOH of 165 Mpa and lowest tensile strength in AHF with 10% Alkali treatment of 137 MPa.


2015 ◽  
Vol 1123 ◽  
pp. 147-150 ◽  
Author(s):  
Harini Sosiati ◽  
Henny Pratiwi ◽  
Dwi Astuti Wijayanti ◽  
Soekrisno

Cellulose microfibrils were extracted from kenaf fiber by alkali treatments under various conditions to further characterize their properties and verify the factors which induce fiber degradation. Before treatment, the surface morphologies of the base, middle and tip of the raw fiber were observed. The tensile strength of untreated and treated fibers was measured with a universal tensile machine (UTM). Changes in surface morphologies of cellulose microfibrils were characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was used to characterize the functional group related to cellulosic and non-cellulosic phases. Surface morphology of the middle of the fiber was denser and stronger than that of the periphery and therefore used to define an initial condition of fiber specimen. Alkali treatment in 6% NaOH at room temperature for 1 h increased the tensile strength of the microfibril; 9% NaOH at 100°C for 2 h results in a marked decrease. Damage to the fiber surface and loss of crystallinity were associated with decreased tensile strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Mamunur Rashid ◽  
Sabrin A. Samad ◽  
M. A. Gafur ◽  
Md. Rakibul Qadir ◽  
A. M. Sarwaruddin Chowdhury

This research studied the physicomechanical as well as morphological properties of alkali treated (NaOH and KMnO4) and untreated banana bark fiber (BBF) reinforced polypropylene composites. A detailed structural and morphological characterization was performed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and mechanical properties testing (tensile strength, flexural strength, and microhardness). Chemical treatments improved the hydrophobic property of the fiber and it is found to be better for KMnO4treatment. Composites with 0, 5, 10, and 15 wt.% loadings were then compared for water uptake studies and revealed that KMnO4treated fiber composites absorb less water compared to others. KMnO4treatment with 15% fiber loading improved the tensile strength, flexural strength, and microhardness of the composites compared to raw and NaOH treated fiber loadings. TGA analysis also shows onset temperature at 400~500°C that is associated with the decomposition of the banana fibers constituents including lignin, cellulose, and hemicelluloses which suggests better thermomechanical stability. All of the values suggest that 15% KMnO4treated banana bark fiber (BBF)/PP composites were found to be better than those of the raw and NaOH treated ones.


2014 ◽  
Vol 931-932 ◽  
pp. 68-72
Author(s):  
Komsun Temna ◽  
Nitinart Saetung ◽  
Anuwat Saetung

In this work, the sponge rubbers based on cassava starch masterbatch in latex phase with the difference technique (non-gelatinized and gelatinized cassava starch) were preformed. The cassava starch contents from 0 to 70 phr were also studied. The cure characteristic, mechanical and morphological properties were investigated. It was found that the scorch time and cure time were increased with an increasing of cassava starch contents in both techniques. The mechanical properties i.e., tensile strength, elongation at break and tear strength were decreased with an increasing of cassava starch contents, except 500% modulus. However, the sponge based on gelatinized technique gave the better mechanical properties than that of non-gelatinized cassava starch. The SEM micrographs of sponge NR from gelatinized technique were also able to confirm a good interfacial interaction between hydrophilic cassava starch and hydrophobic NR.


1976 ◽  
Vol 46 (8) ◽  
pp. 590-599 ◽  
Author(s):  
D. J. Carlsson ◽  
F. R. S. Clark ◽  
D. M. Wiles

The photo-oxidation of commercial, isotactic polypropylene monofilament, initiated by xenon-arc irradiation in air, leads to the initial accumulation in the fiber surface of both carbonyl species and hydroperoxide groups. These chemical changes are accompanied by a severe drop in the elongation at break. Extended irradiation leads to a substantial accumulation of these oxidation products throughout the fiber and to a loss of tensile strength. Oxidation products were identified and estimated from transmission and internal reflection in spectroscopy [∼C(O)∼ and —OH] and by chemical analysis (—OOH). Marked increases in fiber wettability were also found to accompany photo-oxidation. Distinct differences in product ratios from photo-oxidized polypropylene film and fiber samples were observed. These differences are consistent with the morphological control of the efficiency of initiation after hydroperoxide photocleavage, but are more likely to result from some radical scavenging by the unextractable phenolic additive in the commercial fiber.


2020 ◽  
Vol 21 (2) ◽  
pp. 230-238
Author(s):  
Mohamad Firdaus Omar ◽  
NURIAH MOHAMAD ◽  
Fathilah Ali

Latex compounding which incorporates various types of clays as filler to the rubber can significantly give reinforcement in the rubber matrix when rubber/clay nanocomposites are formed, but the filler agglomerates. Thus, study was conducted by using Kaolin clay as the filler in the rubber nanocomposites with silane coupling agent to functionalize the surface of the filler. This study was done in order to investigate the mechanical properties of various functionalized Kaolin in latex nanocomposites, to prepare various ratios of Kaolin to rubber, and to characterize mechanical, thermal and morphological properties of the Kaolin in latex nanocomposites. To achieve these, six types of silane coupling agents was used for Kaolin filler surface functionalization purpose during the filler’s incorporation in latex compounding. The optimized coupling agent, USi-7301 (?-chloropropyltrimetoxysilane) – with tensile strength value of 32.77 MPa, elongation at break value of 632.589 % and force at break value of 6.737 N – was used to further functionalize Kaolin filler in different ratios so as to achieve the optimum mechanical, thermal and morphological properties of the filler in the polymer matrix. Universal tensile machine was used to analyze the mechanical properties of the nanocomposites, while the Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC) were used to observe the morphological and thermal properties of the nanocomposites, respectively. The results showed that reducing the Total Solids Content (TSC) of Kaolin filler to 26 % somehow showed the optimized properties of the nanocomposites, giving 34.00 MPa tensile strength, 576.494 % elongation at break and 6.564 N force at break. Rough surface morphology was observed under SEM suggesting the occurrence of phase separation between the hydrophilic filler and the hydrophobic rubber matrix. In the DSC plot, sample with USi-7301 and with functionalized Kaolin filler 26 % TSC showed glass transition temperature shifted to lower region compared to normal nitrile rubber. The reinforcement of nanocomposites formed will not only enhance the properties of the nanocomposites, but is also economically feasible thus brings advantages to the industry. ABSTRAK: Penyebatian lateks yang menggabungkan pelbagai jenis tanah liat sebagai pengisi dalam getah dapat memberi pengukuhan dalam matriks getah dengan ketara apabila nanokomposit getah / tanah liat terbentuk, tetapi pengisi mengagregat. Oleh itu, kajian dijalankan dengan menggunakan tanah liat Kaolin sebagai pengisi dalam nanokomposit getah dengan ejen gandingan silan untuk menambah-fungsi permukaan pengisi tersebut. Kajian ini dilakukan untuk mengenalpasti sifat mekanik pelbagai Kaolin (yang berfungsi) dalam nanokomposit lateks, untuk menyediakan pelbagai nisbah Kaolin terhadap getah, dan untuk mencirikan sifat mekanik, haba dan morfologi Kaolin dalam nanokomposit lateks. Untuk mencapainya, enam jenis ejen gandingan silan digunakan untuk tujuan menambah-fungsi permukaan pengisi Kaolin semasa penggabungan pengisi dalam penyebatian lateks. Ejen gandingan silan yang paling optimum, USi-7301 (?-silan kloropropiltrimetoksi) - dengan nilai kekuatan tegangan 32.77 MPa, nilai pemanjangan ketika pemutusan 632.589% dan kekuatan daya ketika pemutusan 6.737 N - digunakan dengan lebih lanjut untuk menambah-fungsi pengisi Kaolin dalam nisbah yang berbeza untuk lebih mencapai sifat mekanikal, haba dan morfologi optimum pengisi dalam matriks polimer lateks. Mesin tegangan universal digunakan untuk menganalisis sifat mekanik nanokomposit, sementara Mikroskopi Elektron Pengimbasan (SEM) dan Kalorimetri Pengimbasan Berbeza (DSC) digunakan untuk menganalisa sifat morfologi dan haba nanokomposit tersebut. Hasil kajian menunjukkan bahawa pengurangan Jumlah Kandungan Pepejal (TSC) pengisi Kaolin kepada 26% menunjukkan sifat optimum nanokomposit, dengan kekuatan tegangan 34.00 MPa, pemanjangan ketika pemutusan sebanyak 576.494% dan daya ketika pemutusan sebanyak 6.564 N. Morfologi permukaan kasar diperhatikan di bawah SEM dan ia menunjukkan berlakunya pemisahan fasa antara pengisi hidrofilik dan matriks getah hidrofobik. Dalam plot DSC, sampel dengan USi-7301 dan dengan pengisi Kaolin yang difungsikan dengan 26% TSC menunjukkan suhu peralihan kaca beralih ke kawasan yang lebih rendah berbanding getah nitril biasa. Pengukuhan nanokomposit yang terbentuk bukan sahaja akan meningkatkan sifat nanokomposit, tetapi juga dapat dilaksanakan secara ekonomi sehingga memberi banyak kelebihan kepada industri.


2019 ◽  
Vol 798 ◽  
pp. 285-290
Author(s):  
Nattakarn Hongsriphan ◽  
Nitinon Viratchaiboot ◽  
Prechapol Indrasook ◽  
Sahapat Hanbuakaeo

Poly(butylene succinate) (PBS) was blended with poly(butylene adipate-co-terephthalate) (PBAT) in weight ratios of 80/20 and 70/30 wt%. Zeolite4A and zeolite13X of 1, 2, and 3 wt% were added which polyethylene glycol (PEG) was used to improve compatibility. The blends and composites were compounded and extruded into thin films. Mechanical, thermal, and morphological properties were studied. Water absorption was also investigated. The results showed that adding PEG enhanced elongation at break of the PBS70/PBAT30 film due to plasticizing effect. Better miscibility between PBS and PBAT was observed after adding PEG. Nevertheless, zeolite particles reduced elongation at break of composite films. The composite films with zeolite13X had higher tensile strength but lower elongation at break than those with zeolite4A. The degree of crystallinity increased significantly in the PBS70/PBAT30 film. The 24-hour water absorption of the blends was higher than that of neat PBS film and was higher with respect to zeolite content.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1705 ◽  
Author(s):  
Yang Qin ◽  
Hui Zhang ◽  
Yangyong Dai ◽  
Hanxue Hou ◽  
Haizhou Dong

Alkali treatment is used for melt extrusion film formation with corn starch, but optimal conditions for this procedure are still unknown. In this study, the changes in properties and structure of high amylose corn starch (70%) films with different concentrations of sodium hydroxide (NaOH), prepared by melting extrusion, were investigated. With increasing sodium hydroxide concentrations, the tensile strength of the high-amylose starch film decreased gradually, while the elongation at break increased. The tensile strength of the high amylose starch (HAS) film with 2% NaOH-treatment was 10.03 MPa and its elongation at break was 40%. A 2% NaOH-treatment promoted the orderly rearrangement of starch molecules and formed an Eh-type crystal structure, which enlarged the spacing of the single helix structure, increased the molecular mobility of the starch, and slowed down the process of recrystallization; a 10% NaOH-treatment oxidized the hydroxyl groups of the high amylose corn starch during extrusion, formed a poly-carbonyl structure, and initiated the degradation and cross-linking of starch molecule chains.


Sign in / Sign up

Export Citation Format

Share Document