Effect of Heterogeneous Field Conditions on Corn Seeding Depth Accuracy and Uniformity

2018 ◽  
Vol 34 (5) ◽  
pp. 819-830 ◽  
Author(s):  
Aurelie M. Poncet ◽  
John P. Fulton ◽  
Timothy P. McDonald ◽  
Thorsten Knappenberger ◽  
Joey N. Shaw ◽  
...  

Abstract. Optimization of planter performance such as uniform seeding depth is required to maximize crop yield potential. Typically, seeding depth is manually adjusted prior to planting by selecting a row-unit depth and a row-unit downforce to ensure proper seed-soil contact. Once set, row-unit depth and downforce are usually not adjusted again for a field although soil conditions may vary. Optimization of planter performance requires automated adjustments of planter settings to varying soil conditions, but development of precision technologies with such capabilities requires a better understanding of soil-planter interactions. The objective of this study was to evaluate seeding depth response to varying soil conditions between and within fields and to discuss implications for development and implementation of active planting technologies. A 6-row John Deere MaxEmerge Plus planter equipped with heavy-duty downforce springs was used to plant corn ( L.) in central Alabama during the 2014 and 2015 growing seasons. Three depths (4.4, 7.0, and 9.5 cm) and three downforces (corresponding to an additional row-unit weight of 0.0, 1.1, and 1.8 kN) were selected to represent common practices. Depth and downforce were not readjusted between fields and growing seasons. Seeding depth was measured after emergence. Corn seeding depth significantly varied with heterogeneous soil conditions between and within fields and the planter failed to achieve uniform seeding depth across a field. Differences in corn seeding depth between fields and growing seasons were as high as 2.1 cm for a given depth and downforce combination. Corn seeding depth significantly co-varied with field elevation but not with volumetric soil water content. Seeding depth varied with elevation at a rate ranging from -0.1 cm/m to -0.6 cm/m. Seeding depth co-variation to field elevation account for some but not all site-specific seeding depth variability identified within each field trial. These findings provide a better understanding of site-specific seeding depth variability and issues to address for the development of site-specific planting technologies to control seeding depth accuracy and improve uniformity. Keywords: Depth control, Downforce, Planter, Precision agriculture, Seeding depth, Uniformity.

2015 ◽  
Vol 18 (2) ◽  
pp. 42-45 ◽  
Author(s):  
Martin Ingeli ◽  
Jana Galambošová ◽  
Renáta Benda Prokeinová ◽  
Vladimír Rataj

Abstract Determining the production zones of field is an important analysis in the precision farming technology as these may be used to control field operations in site-specific application. The aim of this paper was to evaluate the potential to identify the yield potential zones based on historical yield maps and to evaluate the procedure over the growing extent of input data. Standardized yield values from six growing seasons were considered. Suitable datasets were created, and hierarchical and non-hierarchical clustering methods were applied to create clusters. Results showed that using the data from commercial combine monitoring systems enables determining the zones. Multiple yield data are recommended as the values of analyses increase with the increased number of input datasets. However, commercial data have limitations in terms of complexity.


2006 ◽  
Vol 321-323 ◽  
pp. 1213-1216
Author(s):  
Sun Ok Chung ◽  
Byong Hak Chong ◽  
Suk Won Kang ◽  
Gi Young Kim

Precision agriculture, also called as site-specific crop (or field) management, is a recent trend in crop production that uses field information collected at different within-field locations to optimize amount, timing, and location of agricultural inputs according to the site-specific requirements. Recent development of soil property sensors has facilitated sensor-based data collection for SSCM in many countries around the world. In this study, commercial soil strength, electrical conductivity, and water content and temperature sensors were applied to a Korean rice (Oriza Sativa L) field and spatial and non-spatial statistical techniques were used to assess soil conditions and the variability, and investigate optimum sampling intensity. Results of the study would be useful for establishment of data collection schemes and better application of soil property sensors to Korean paddy fields for successful precision agriculture.


2012 ◽  
Vol 26 (3) ◽  
pp. 285-293 ◽  
Author(s):  
C. Paraskevas ◽  
P. Georgiou ◽  
A. Ilias ◽  
A. Panoras ◽  
C. Babajimopoulos

Calibration equations for two capacitance water content probesThis paper presents the calibration equations of two capacitance probes for monitoring the soil water content in a lysimeter field. Capacitance probes provide readings at desired depths and time intervals. The calibration equations are derived by regression analysis between measurements of scaled frequency and volumetric soil water content. The calibration equations are compared with the manufacturer default equations to estimate the irrigation water depth. The accuracy of capacitance probes in monitoring soil water content increased by using the site-specific calibration equations rather than the manufacturer default equation.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 558D-558
Author(s):  
Pierre C. Robert

The new agricultural system called soil/site specific crop management (SSCM), now more generally named precision agriculture (precision farming) is the start of a revolution in natural resource management based on INFORMATION TECHNOLOGY AND CONTROL: it is bringing agriculture in the digital and information age. New technologies in the early 80s, particularly the microprocessor, made possible the development in the United States of farm machinery computers and controllers, the electronic acquisition and process of spatial field data to build farm geographic record keeping systems, the production of soil/site specific condition and management maps using GIS, the positioning of machines using GPS, and the development of real-time soil and crop sensors, particularly yield sensors. The concept of precision agriculture originated from a better awareness of soil and crop conditions variability within fields. The variability of soil conditions within parcels in the U.S. has been demonstrated in many ways (soil survey, soil sampling, and remote sensing) for both soil nutrients and soil physical properties (e.g., available water and compaction). It is progressively found that the concept of precision agriculture can be applied to a variety of crops and practices; management technological levels; and farm types and sizes. For example, in addition to grain crops (corn, soybeans, and wheat), applications are now developed for sugar beet and sugar cane, potato, cotton, peanut, vegetables, turf, or- chard, livestock, tree plantation, etc. Precision agriculture is still in infancy but it is the agricultural system of the future because it offers a unique variety of potential benefits in profitability, productivity, sustainability, crop quality, food safety, environmental protection, on-farm quality of life, and rural economic development.


2019 ◽  
Vol 35 (3) ◽  
pp. 399-408
Author(s):  
Aurelie M. Poncet ◽  
John P. Fulton ◽  
Timothy P. McDonald ◽  
Thorsten Knappenberger ◽  
Joey N. Shaw

Abstract. Optimum row-crop planter seeding depth performance is required to place seeds within proper soil conditions to ensure quick germination and maximize the likelihood of uniform emergence. Seeding depth is adjusted prior to planting by selecting a row-unit depth, followed by the adjustment of a row-unit downforce for proper seed-soil contact. Optimum row-unit depth and downforce settings required to maintain a consistent seeding depth are variable. The objective of this study was to evaluate corn ( L) emergence and yield response to row-unit depth and downforce in changing field conditions between sites and growing seasons. Corn was planted with a 6-row John Deere MaxEmerge Plus planter equipped with heavy duty downforce springs. The experiment was conducted in 2014 and 2015 in Central Alabama for non-irrigated corn. Two fields, three row-unit depths (4.4, 7.0, and 9.5 cm), and three row-unit downforce settings (0.0, 1.1, and 1.8 kN) were evaluated. Emergence was measured at 75 and 100 Growing Degree Days (GDDs). Yield was measured using a yield monitor installed on the combine harvester. Corn emergence was mainly affected by changes in weather conditions. Row-unit depth and downforce did not affect corn emergence in warmer weather conditions but the 4.4 cm row-unit depth resulted in more emergence than the other row-unit depth settings in cooler weather conditions. Yield ranged from 8,000 to 13,000 kg ha-1 across treatments and yield was mostly affected by changing growing conditions between fields and growing seasons. Plant population significantly varied with treatments, but lower plant populations did not always result in lower corn yields. These findings provided a better understanding of corn emergence and yield response to row-unit depth and downforce in varying field conditions. Keywords: Corn, Depth, Downforce, Emergence, Maize, Planter, Yield.


1999 ◽  
Vol 64 ◽  
Author(s):  
K. M. Tabari ◽  
N. Lust

Monitoring  of natural regeneration in a dense semi-natural mixed hardwood forest on the  base    of ash, beech, oak and sycamore occurred over 3 years in the Aelmoeseneie  experimental    forest, Belgium. 40 permanent plots (4 m x 5 m) were selected in three  various humus types,    located in an ash stand and in an oak - beech stand. In all plots abundance  and top height of all    broad leaved regenerated species were determined at the end of the growing  seasons 1995 and    1998. In addition, the seedlings which appeared in the plots during 1996  and 1997 were    identified and followed up.    This study proves that in the investigated sites natural regeneration is  drastically poor and    diversity is low, in particular where the humus layer is more acidic (mull  moder) and the litter    layer is thick. No regeneration phase older than the seedling stage (h <  40 cm) is developed on    the different humus types. On average, total number of seedlings in 1995  amounts to 38    units/are in the ash stand and to 63 units/are in the oak - beech stand.  Survival rate over a 3-    year period is 37% and 42% respectively in the ash and oak - beech stands.  Total ingrowth    during the growing seasons 1996 and 1997 is virtually poor, indicating 16  and 8 units/are    respectively in above mentioned stands. Survival rate of occurring  seedlings, as well as the ingrowth of new seedlings are notably different (P < 0.05) according to the soil conditions of the    ash stand. Generally, the low presence of seedlings and the lack of  regeneration older than the    seedling stage reveal that the regeneration development encounters with a  critical problem. The    continuation of this process would likely result in a progressive  succession by the invasive and    the unwanted tree species.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


2021 ◽  
Author(s):  
Milica Dima ◽  
Aurelia Diaconu ◽  
Reta Drăghici ◽  
Drăghici Iulian ◽  
Matei Gheorghe

"For the capitalization of the climate and soil conditions for the sandy soil region in Southern Oltenia by cultivating peanuts it is necessary to use varieties with large production abilities and proper technology for the crops. In view of its cultivation on south Oltenia sandy soils, there were carried out in the period 2004-2006, at the Plants Crops Research and Development Station on Sandy Soils Dabuleni, experiments have been set regarding aspects such as: the optimal seeding period, the recommendation varieties with high yield potential and balanced composition. The research was conducted under irrigation conditions, in a three-year rotation of wheat, peanut, maize. Along with erect growth type varieties, known for their short vegetation period, rising and creeping growth type varieties can also be used; these varieties have a great production potential in our country`s conditions. Establishing the proper time for seeding is espe since sandy soils are heating quickly but are also cooling quickly, the best seeding time is between the end of April- the beginning of May, depending on the date when the seeding depth has a steady temperature, minimal required for the seed to germinate."


2021 ◽  
Author(s):  
Zach S Grover ◽  
Rachel L Cook ◽  
Marcela Zapata ◽  
J Byron Urrego ◽  
Timothy J Albaugh ◽  
...  

Abstract Calcium (Ca) is a critical plant nutrient typically applied at the time of planting in intensive Eucalyptus plantations in South America. At two sites in Colombia, we examined (1) calcium source by comparing growth after application of 100 kg ha−1 elemental Ca as lime or as pelletized highly reactive calcium fertilizer (HRCF) compared to a no application control, and (2) Ca rate by applying 0, 100, 200, and 400 kg ha−1 elemental Ca as HRCF with the addition of nitrogen, phosphorus, potassium, sulfur, and boron (NPKSB). We assessed height, diameter, and volume after 12 and 24 months. There were no growth differences from Ca source at the 100 kg ha−1 rate. We found increased volume after 24 months at the “Popayan” site with 200 and 400 kg ha−1 Ca HRCF+NPKSB treatments (112 and 113 m3 ha−1, respectively) compared to control (92 m3 ha−1), a 22% increase. In contrast, volume did not differ after 24 months at the “Darien” site, ranging from 114 m3 ha−1 in the 0 kg ha−1 Ca HRCF+NPKSB treatment to 98 m3 ha−1 in the control. Differences in response are likely due to soil characteristics, such as organic matter, emphasizing the importance of identifying site-specific nutrient deficiencies. Study Implications: Operational applications may be over- or under-applying calcium carbonate in Eucalyptus plantations in South America. In the first two years of a seven-year rotation located in volcanic soils in Colombia, we found that one site with more organic matter at a greater depth did not need Ca additions, whereas the other site required greater than current operational applications to optimize productivity. Ca application rate trials across a gradient of soil conditions could establish critical values and improve recommendations of appropriate Ca application rates and emphasize the importance of understanding site-specific soil conditions to produce effective fertilization regimes.


2018 ◽  
Vol 10 (6) ◽  
pp. 97-105 ◽  
Author(s):  
Morgan Amanda ◽  
Joseph Pearson Brian ◽  
Shad Ali Gul ◽  
Moore Kimberly ◽  
Osborne Lance

Sign in / Sign up

Export Citation Format

Share Document