scholarly journals Subclinical endometritis in dairy cattle is associated with distinct mRNA expression patterns in blood and endometrium

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220244 ◽  
Author(s):  
Mariam Raliou ◽  
Doulaye Dembélé ◽  
Anna Düvel ◽  
Philippe Bolifraud ◽  
Julie Aubert ◽  
...  
2010 ◽  
Vol 22 (5) ◽  
pp. 818 ◽  
Author(s):  
Claudia Fischer ◽  
Marc Drillich ◽  
Simone Odau ◽  
Wolfgang Heuwieser ◽  
Ralf Einspanier ◽  
...  

Endometrial cells take part in embryo–maternal communication, as well as supporting the immune system in defending against invading pathogens. The aim of the present study was to examine the mRNA expression of factors that have been suggested to be involved in both events in the bovine endometrial epithelium, namely bovine granulocyte chemotactic protein 2 (CXCL5), interleukin-1 beta (IL1B), IL6, IL8, tumour necrosis factor (TNF), cyclooxygenase 2 (PTGS2) and haptoglobin (HP). Samples were collected in vivo from cows on Days 21–27 postpartum by the cytobrush method to evaluate the correlation between inflammatory factors and uterine health (cows with signs of clinical or subclinical endometritis and healthy cows). Bovine uteri were collected at the abattoir to investigate oestrous cycle-dependent mRNA expression patterns. Real-time reverse transcription–polymerase chain reaction revealed that the expression of CXCL5, IL1B, IL8 and TNF mRNA was significantly higher in cows with subclinical or clinical endometritis compared with healthy cows. The expression of CXCL5, IL1B and IL8 mRNA was increased around ovulation compared with the luteal phase. There was no indication of either oestrous cycle-dependent expression or a correlation with uterine health for IL6, PTGS2 and HP transcripts. These results suggest that CXCL5, IL1B, IL8 and TNF may represent potential marker genes for the detection of cows with subclinical endometritis and for monitoring new therapeutic approaches.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Birhan Alemnew ◽  
Soren T. Hoff ◽  
Tamrat Abebe ◽  
Markos Abebe ◽  
Abraham Aseffa ◽  
...  

Abstract Background Understanding immune mechanisms, particularly the role of innate immune markers during latent TB infection remains elusive. The main objective of this study was to evaluate mRNA gene expression patterns of toll-like receptors (TLRs) as correlates of immunity during latent TB infection and further infer their roles as potential diagnostic biomarkers. Methods Messenger RNA (mRNA) levels were analysed in a total of 64 samples collected from apparently healthy children and adolescents latently infected with tuberculosis (n = 32) or non-infected (n = 32). Relative expression in peripheral blood of selected genes encoding TLRs (TLR-1, TLR-2, TLR-4, TLR-6 and TLR-9) was determined with a quantitative real-time polymerase chain reaction (qRT-PCR) using specific primers and florescent labelled probes and a comparative threshold cycle method to define fold change. Data were analysed using Graph-Pad Prism 7.01 for Windows and a p-value less than 0.05 was considered statistically significant. Results An increased mean fold change in the relative expression of TLR-2 and TLR-6 mRNA was observed in LTBI groups relative to non-LTBI groups (p < 0.05), whereas a slight fold decrease was observed for TLR-1 gene. Conclusions An increased mRNA expression of TLR-2 and TLR-6 was observed in latently infected individuals relative to those non-infected, possibly indicating the roles these biomarkers play in sustenance of the steady state interaction between the dormant TB bacilli and host immunity.


1995 ◽  
Vol 147 (2) ◽  
pp. R5-R8 ◽  
Author(s):  
Randal D. Streck ◽  
Veeraramani S. Rajaratnam ◽  
Renata B. Fishman ◽  
Peggy J. Webb

ABSTRACT Matemal diabetes is associated in humans and rats with an increased risk for fetal growth abnormalities and malformations. Therefore, the effect of maternal diabetes on expression of genes that regulate fetal growth and differentiation is of considerable interest. Developmental growth is regulated in part by the expression and availability of insulin-like growth factors (IGFs). Postnatal expression of a subset of the IGFs and IGF binding proteins (IGFBPs) has been demonstrated to be regulated in response to diabetes and other metabolic conditions. We used in situ hybridization to analyze the effect of maternal diabetes, induced by streptozotocin (STZ) prior to mating, upon prenatal rat IGF and IGFBP mRNA expression. At gestational day (GD) 14, the most striking effect of maternal diabetes on fetal IGF/IGFBP gene expression was a marked increase in the abundance of IGFBP-1 mRNA within the liver primordia of fetuses isolated from diabetic dams compared to age-matched controls. This upregulation cannot be entirely due to the approximately one-half-day delay in fetal development (based on limb bud staging) associated with maternal diabetes, as there was no gross difference in the level of IGFBP-1 mRNA between GD13 and GD14 control fetal livers. In contrast, the fetal mRNA expression patterns of IGF-I, IGF-II and IGFBP-2, -3, -4, -5 and -6 were not grossly altered by maternal diabetes. These data are consistent with the hypothesis that IGFBP-1 produced within the fetal liver and secreted into fetal circulation may play a role in regulating rat fetal growth.


2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 869-882 ◽  
Author(s):  
Camilla A.-M. Glad ◽  
Edward E. J. Kitchen ◽  
Gemma C. Russ ◽  
Sophie M. Harris ◽  
Jeffrey S. Davies ◽  
...  

Reversed feeding (RF) is known to disrupt hormone rhythmicity and metabolism. Although these effects may be mediated in part by phase inversion of glucocorticoid secretion, the precise mechanism is incompletely characterized. In this study, we demonstrate that acute nocturnal food deprivation in male rats suppressed the amplitude of spontaneous GH secretion during the dark phase by 62% (P &lt; 0.001), without affecting baseline secretion. Prolonged RF, which reduced pituitary weight (by 22%; P &lt; 0.05), also suppressed GH pulse height sufficiently to reduce skeletal growth (by 4–5%; P &lt; 0.01) and terminal liver weight (by 11%; P &lt; 0.001). Despite this suppression of the GH axis, proportionate adiposity was not elevated, probably due to the accompanying 16% reduction in cumulative food intake (P &lt; 0.01). We demonstrate that RF also resulted in phase inversion of core clock gene expression in liver, abdominal white adipose tissue (WAT) and skeletal muscle, without affecting their expression patterns in the suprachiasmatic nucleus. In addition, RF resulted in phase inversion of hepatic peroxisome proliferator-activated receptor γ2 mRNA expression, a 3- to 5-fold elevation in fatty acid synthase mRNA in WAT in both light- and dark-phase samples (P &lt; 0.01) and an elevation in muscle uncoupling protein 3 mRNA expression at the beginning of the light phase (P &lt; 0.01). Consumption of a high-fat diet increased inguinal (by 36%; P &lt; 0.05) and retroperitoneal WAT weight (by 72%; P &lt; 0.01) only in RF-maintained rats, doubling the efficiency of lipid accumulation (P &lt; 0.05). Thus, RF not only desynchronizes central and peripheral circadian clocks, and suppresses nocturnal GH secretion, but induces a preobesogenic state.


2014 ◽  
Vol 111 (11) ◽  
pp. 1918-1931 ◽  
Author(s):  
Sam Penglase ◽  
Kristin Hamre ◽  
Josef D. Rasinger ◽  
Staale Ellingsen

Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.


2021 ◽  
Vol 11 (12) ◽  
pp. 1291
Author(s):  
Deni Ramljak ◽  
Martina Vukoja ◽  
Marina Curlin ◽  
Katarina Vukojevic ◽  
Maja Barbaric ◽  
...  

Healthy and controlled immune response in COVID-19 is crucial for mild forms of the disease. Although CD8+ T cells play important role in this response, there is still a lack of studies showing the gene expression profiles in those cells at the beginning of the disease as potential predictors of more severe forms after the first week. We investigated a proportion of different subpopulations of CD8+ T cells and their gene expression patterns for cytotoxic proteins (perforin-1 (PRF1), granulysin (GNLY), granzyme B (GZMB), granzyme A (GZMA), granzyme K (GZMK)), cytokine interferon-γ (IFN-γ), and apoptotic protein Fas ligand (FASL) in CD8+ T cells from peripheral blood in first weeks of SARS-CoV-2 infection. Sixteen COVID-19 patients and nine healthy controls were included. The absolute counts of total lymphocytes (p = 0.007), CD3+ (p = 0.05), and CD8+ T cells (p = 0.01) in COVID-19 patients were significantly decreased compared to healthy controls. In COVID-19 patients in CD8+ T cell compartment, we observed lower frequency effector memory 1 (EM1) (p = 0.06) and effector memory 4 (EM4) (p < 0.001) CD8+ T cells. Higher mRNA expression of PRF1 (p = 0.05) and lower mRNA expression of FASL (p = 0.05) at the fifth day of the disease were found in COVID-19 patients compared to healthy controls. mRNA expression of PRF1 (p < 0.001) and IFN-γ (p < 0.001) was significantly downregulated in the first week of disease in COVID-19 patients who progressed to moderate and severe forms after the first week, compared to patients with mild symptoms during the entire disease course. GZMK (p < 0.01) and FASL (p < 0.01) mRNA expression was downregulated in all COVID-19 patients compared to healthy controls. Our results can lead to a better understanding of the inappropriate immune response of CD8+ T cells in SARS-CoV2 with the faster progression of the disease.


2020 ◽  
Vol 194 (5) ◽  
Author(s):  
P. Ostheim ◽  
J. Haupt ◽  
S. Schüle ◽  
F. Herodin ◽  
M. Valente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document