scholarly journals Tuning cell behavior with nanoparticle shape

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240197
Author(s):  
Edoardo Scarpa ◽  
Cesare De Pace ◽  
Adrian Steve Joseph ◽  
Senio Campos de Souza ◽  
Alessandro Poma ◽  
...  

We investigated how the shape of polymeric vesicles, made by the exact same material, impacts the replication activity and metabolic state of both cancer and non-cancer cell types. First, we isolated discrete geometrical structures (spheres and tubes) from a heterogeneous sample using density-gradient centrifugation. Then, we characterized the cellular internalization and the kinetics of uptake of both types of polymersomes in different cell types (either cancer or non-cancer cells). We also investigated the cellular metabolic response as a function of the shape of the structures internalized and discovered that tubular vesicles induce a significant decrease in the replication activity of cancer cells compared to spherical vesicles. We related this effect to the significant up-regulation of the tumor suppressor genes p21 and p53 with a concomitant activation of caspase 3/7. Finally, we demonstrated that combining the intrinsic shape-dependent effects of tubes with the delivery of doxorubicin significantly increases the cytotoxicity of the system. Our results illustrate how the geometrical conformation of nanoparticles could impact cell behavior and how this could be tuned to create novel drug delivery systems tailored to specific biomedical application.

2010 ◽  
Vol 88 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Eric P. Seidlitz ◽  
Mohit K. Sharma ◽  
Gurmit Singh

Bone is a frequent site for metastasis of breast and prostate cancers, often resulting in pathologic changes in bone metabolism and severe pain. The mechanisms involved are not well understood, but tumour cells may release factors that interfere with bone homeostasis. Several observations have led us to hypothesize that the functional disruptions in bone metastasis are the result of a biological process common to many cell types. The high metabolic activity characteristic of cancer cells often upregulates oxidative stress protection mechanisms such as the antioxidant molecule glutathione. In maintaining redox balance, this normal metabolic response may result in unintended pathologic effects in certain sensitive organ sites. Malignant glioma cells kill surrounding neurons in the brain specifically by secreting the amino acid glutamate, an obligatory waste product of glutathione synthesis. We suggest that glutamate release is a plausible mechanism that may account for the pathologic changes in bone metastasis, since bone, like brain, is also highly sensitive to glutamatergic disruption. This report reviews the available evidence to draw a mechanistic connection between tumour cell oxidative stress and the pathology seen in patients with bone metastasis.


2021 ◽  
Vol 22 (9) ◽  
pp. 4960
Author(s):  
Natalia Guillén Díaz-Maroto ◽  
Gemma Garcia-Vicién ◽  
Giovanna Polcaro ◽  
María Bañuls ◽  
Nerea Albert ◽  
...  

Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benedikt Feuerecker ◽  
Philipp Biechl ◽  
Christof Seidl ◽  
Frank Bruchertseifer ◽  
Alfred Morgenstern ◽  
...  

AbstractEvaluation of treatment response is among the major challenges in modern oncology. We herein used a monoclonal antibody targeting the EGF receptor (EGFR) labelled with the alpha emitter 213Bi (213Bi-anti-EGFR-MAb). EJ28Luc (bladder) and LN18 (glioma) cancer cells, both overexpressing EGFR, were incubated for 3 h with the radioimmunoconjugate. To assess the responses in the core carbon metabolism upon this treatment, these cancer cell lines were subsequently cultivated for 18 h in the presence of [U-13C6]glucose. 13C-enrichment and isotopologue profiles of key amino acids were monitored by gas chromatography–mass spectrometry (GC/MS), in order to monitor the impacts of the radionuclide-treatment upon glucose metabolism. In comparison to untreated controls, treatment of EJ28Luc cells with 213Bi-anti-EGFR-MAb resulted in a significantly decreased incorporation of 13C from [U-13C6]glucose into alanine, aspartate, glutamate, glycine, proline and serine. In sharp contrast, the same amino acids did not display less 13C-enrichments during treatment of the LN18 cells. The data indicate early treatment response of the bladder cancer cells, but not of the glioma cells though cell lines were killed following 213Bi-anti-EGFR-MAb treatment. The pilot study shows that the 13C-labelling approach is a valid tool to assess the responsiveness of cancer cells upon radionuclide-treatment in considerable metabolic detail.


2021 ◽  
Vol 22 (13) ◽  
pp. 6865
Author(s):  
Kirstine Sandal Nørregaard ◽  
Henrik Jessen Jürgensen ◽  
Henrik Gårdsvoll ◽  
Lars Henning Engelholm ◽  
Niels Behrendt ◽  
...  

Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.


2020 ◽  
Vol 21 (24) ◽  
pp. 9585
Author(s):  
Melania Dovizio ◽  
Patrizia Ballerini ◽  
Rosa Fullone ◽  
Stefania Tacconelli ◽  
Annalisa Contursi ◽  
...  

Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell–cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.


1998 ◽  
Vol 76 (7-8) ◽  
pp. 721-727 ◽  
Author(s):  
M W Bolt ◽  
W J Racz ◽  
J F Brien ◽  
T M Bray ◽  
T E Massey

Treatment of cardiac dysrhythmias with the iodinated benzofuran derivative amiodarone (AM) is limited by pulmonary toxicity. The susceptibilities of different lung cell types of male Golden Syrian hamsters to AM-induced cytotoxicity were investigated in vitro. Bronchoalveolar lavage and protease digestion to release cells, followed by centrifugal elutriation and density gradient centrifugation, resulted in preparations enriched with alveolar macrophages (98%), alveolar type II cells (75-85%), and nonciliated bronchiolar epithelial (Clara) cells (35-50%). Alveolar type II cell and Clara cell preparations demonstrated decreased viability (by 0.5% trypan blue dye exclusion) when incubated with 50 µM AM for 36 h, and all AM-treated cell preparations demonstrated decreased viability when incubated with 100 or 200 µM AM. Based on a viability index ((viability of AM-treated cells ÷ viability of controls) × 100%), the Clara cell fraction was significantly (p < 0.05) more susceptible than all of the other cell types to 50 µM AM. However, AM cytotoxicity was greatest (p < 0.05) in alveolar macrophages following incubation with 100 or 200 µM AM. There was no difference between any of the enriched cell preparations in the amount of drug accumulated following 24 h of incubation with 50 µM AM, whereas alveolar macrophages accumulated the most drug during incubation with 100 µM AM. Thus, the most susceptible cell type was dependent on AM concentration. AM-induced cytotoxicity in specific cell types may initiate processes leading to inflammation and pulmonary fibrosis.Key words: amiodarone, susceptibility, alveolar macrophage, accumulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mairim Alexandra Solis ◽  
Ying-Hui Chen ◽  
Tzyy Yue Wong ◽  
Vanessa Zaiatz Bittencourt ◽  
Yen-Cheng Lin ◽  
...  

Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.


1994 ◽  
Vol 107 (7) ◽  
pp. 1773-1782 ◽  
Author(s):  
U. Gluck ◽  
A. Ben-Ze'ev

alpha-Actinin is an abundant actin crosslinking protein, also localized at adherens type junctions. In adhesion plaques, alpha-actinin can link the actin filaments to integrin via vinculin and talin, or directly by binding to the cytoplasmic domain of beta 1-integrin. The expression of alpha-actinin is rapidly elevated in growth-activated quiescent cells, and is reduced in SV40-transformed 3T3 cells and various differentiating cell types (reviewed by Gluck, U., Kwiatkowski, D. J. and Ben-Ze'ev, A. Proc. Nat. Acad. Sci. USA 90, 383–387, 1993). To study the effect of changes in alpha-actinin levels on cell behavior, alpha-actinin expression was elevated in 3T3 cells by transfection with a full-length human nonmuscle alpha-actinin cDNA. To suppress alpha-actinin levels, 3T3 cells were transfected with an antisense alpha-actinin cDNA construct. Cells overexpressing alpha-actinin by 40–60% displayed a significant reduction in cell motility, as demonstrated by their slower locomotion into an artificial wound, and by forming shorter phagokinetic tracks on colloidal gold-coated substrata. 3T3 cells in which the expression of alpha-actinin was reduced to 25–60% of control levels, after antisense alpha-actinin transfection, had an increased cell motility. Moreover, such alpha-actinin-deficient 3T3 cells formed tumors upon injection into nude mice. The results demonstrate that modulations in alpha-actinin expression can affect, in a major way, the motile and tumorigenic properties of cells, and support the view that decreased alpha-actinin expression could be a common regulatory pathway to malignant transformation of 3T3 cells.


1990 ◽  
Vol 259 (2) ◽  
pp. F338-F347 ◽  
Author(s):  
L. H. Lash ◽  
J. J. Tokarz

Suspensions of purified proximal tubular (PT) and distal tubular (DT) cells were isolated from rat kidney cortical cells by Percoll density-gradient centrifugation and were used to investigate susceptibility of these regions of the nephron to oxidative injury. Exposure to tert-butyl hydroperoxide (tBH), menadione (MD), or H2O2 produced significantly greater cytotoxicity, as assessed by leakage of lactate dehydrogenase, in DT cells than in PT cells. The order of cytotoxic potency in both cell types was MD greater than tBH greater than H2O2. Preincubation of PT and DT cells with 5 mM glutathione (GSH) or 5 mM dithiothreitol delayed tBH-induced cytotoxicity, indicating a protective role of GSH. Addition of buthionine sulfoximine and acivicin with GSH, to inhibit GSH synthesis and degradation, eliminated the protective effect of GSH, indicating that protection by GSH in DT cells is not dependent on uptake of the intact tripeptide. Incubation of both PT and DT cells with tBH resulted in oxidation of GSH to glutathione disulfide. Activities of five detoxication enzymes were significantly higher in PT cells, indicating that a diminished ability to detoxify reactive metabolites may contribute to the higher intrinsic susceptibility of DT cells to oxidative injury.


Sign in / Sign up

Export Citation Format

Share Document