scholarly journals Geography as non-genetic modulation factor of chicken cecal microbiota

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244724
Author(s):  
Natalia Pin Viso ◽  
Enzo Redondo ◽  
Juan María Díaz Carrasco ◽  
Leandro Redondo ◽  
Julia Sabio y. Garcia ◽  
...  

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term “local microbiota” as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.

2019 ◽  
Vol 7 (11) ◽  
pp. 480 ◽  
Author(s):  
Yang ◽  
Park ◽  
Park ◽  
Baek ◽  
Chun

The gut microbiota modulates overall metabolism, the immune system and brain development of the host. The majority of mammalian gut microbiota consists of bacteria. Among various model animals, the mouse has been most widely used in pre-clinical biological experiments. The significant compositional differences in taxonomic profiles among different mouse strains due to gastrointestinal locations, genotypes and vendors have been well documented. However, details of such variations are yet to be elucidated. This study compiled and analyzed 16S rRNA gene-based taxonomic profiles of 554 healthy mouse samples from 14 different projects to construct a comprehensive database of the microbiome of a healthy mouse gastrointestinal tract. The database, named Murine Microbiome Database, should provide researchers with useful taxonomic information and better biological insight about how each taxon, such as genus and species, is associated with locations in the gastrointestinal tract, genotypes and vendors. The database is freely accessible over the Internet at http://leb.snu.ac.kr/mmdb/.


2021 ◽  
Author(s):  
Qi Yan Ang ◽  
Diana L. Alba ◽  
Vaibhav Upadhyay ◽  
Jordan E. Bisanz ◽  
Jingwei Cai ◽  
...  

Abstract Background: The human gut microbiota exhibits marked variation around the world, which has been attributed to dietary intake and other environmental factors. However, the degree to which ethnicity-associated differences in gut microbial community structure and function are maintained following immigration or in the context of metabolic disease is poorly understood.Results: We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area. 16S rRNA gene sequencing revealed significant differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian participants had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White groups could not be explained by reported dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice confirmed that the differences in the gut microbiota of the East Asian and White individuals we analyzed are independent of diet and that they differentially impact host body weight and adiposity in genetically identical mouse recipients.Conclusions: The reported findings emphasize the utility of studying diverse ethnic groups within a defined geographical location and provide a starting point for dissecting the mechanisms contributing to the complex interactions between the gut microbiome and ethnicity-associated lifestyle, demographic, metabolic, and genetic factors.


Author(s):  
Lara Parata ◽  
Shaun Nielsen ◽  
Xing Xing ◽  
Torsten Thomas ◽  
Suhelen Egan ◽  
...  

Abstract Herbivorous fishes play important ecological roles in coral reefs by consuming algae that can otherwise outcompete corals, but we know little about the gut microbiota that facilitates this process. This study focussed on the gut microbiota of an ecologically important coral reef fish, the convict surgeonfish Acanthurus triostegus. We sought to understand how the microbiome of this species varies along its gastrointestinal tract and how it varies between juvenile and adult fish. Further, we examined if the bacteria associated with the diet consumed by juveniles contributes to the gut microbiota. 16S rRNA gene amplicon sequencing showed that bacterial communities associated with the midgut and hindgut regions were distinct between adults and juveniles, however, no significant differences were seen for gut wall samples. The microbiota associated with the epilithic algal food source was similar to that of the juvenile midgut and gut wall but differed from the microbiome of the hindgut. A core bacterial community including members of taxa Epulopiscium and Brevinemataceae was observed across all gastrointestinal and diet samples, suggesting that these bacterial symbionts can be acquired by juvenile convict surgeonfish horizontally via their diet and then are retained into adulthood.


2013 ◽  
Vol 80 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Yue Tang ◽  
Anthony Underwood ◽  
Adriana Gielbert ◽  
Martin J. Woodward ◽  
Liljana Petrovska

ABSTRACTThe animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identifiedClostridiales,Bacteroidaceae, andLactobacillaceaespecies as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged toLactobacillusspp., 155 belonged toClostridiumspp., and 66 belonged toStreptococcusspp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 364
Author(s):  
Bin Wei ◽  
Qiao-Li Xu ◽  
Bo Zhang ◽  
Tao-Shun Zhou ◽  
Song-Ze Ke ◽  
...  

Seaweed polysaccharides represent a kind of novel gut microbiota regulator. The advantages and disadvantages of using cecal and fecal microbiota to represent gut microbiota have been discussed, but the regulatory effects of seaweed polysaccharides on cecal and fecal microbiota, which would benefit the study of seaweed polysaccharide-based gut microbiota regulator, have not been compared. Here, the effects of two Sargassum fusiforme polysaccharides prepared by water extraction (SfW) and acid extraction (SfA) on the cecal and fecal microbiota of high-fat diet (HFD) fed mice were investigated by 16S rRNA gene sequencing. The results indicated that 16 weeks of HFD dramatically impaired the homeostasis of both the cecal and fecal microbiota, including the dominant phyla Bacteroidetes and Actinobacteria, and genera Coriobacteriaceae, S24-7, and Ruminococcus, but did not affect the relative abundance of Firmicutes, Clostridiales, Oscillospira, and Ruminococcaceae in cecal microbiota and the Simpson’s index of fecal microbiota. Co-treatments with SfW and SfA exacerbated body weight gain and partially reversed HFD-induced alterations of Clostridiales and Ruminococcaceae. Moreover, the administration of SfW and SfA also altered the abundance of genes encoding monosaccharide-transporting ATPase, α-galactosidase, β-fructofuranosidase, and β-glucosidase with the latter showing more significant potency. Our findings revealed the difference of cecal and fecal microbiota in HFD-fed mice and demonstrated that SfW and SfA could more significantly regulate the cecal microbiota and lay important foundations for the study of seaweed polysaccharide-based gut microbiota regulators.


2020 ◽  
Author(s):  
Qi Yan Ang ◽  
Diana L. Alba ◽  
Vaibhav Upadhyay ◽  
Jordan E. Bisanz ◽  
Jingwei Cai ◽  
...  

ABSTRACTBackgroundThe human gut microbiota exhibits marked variation around the world, which has been attributed to dietary intake and other environmental factors. However, the degree to which ethnicity-associated differences in gut microbial community structure and function are maintained following immigration or in the context of metabolic disease is poorly understood.ResultsWe conducted a multi-omic study of 46 lean and obese East Asian (EA) and White (W) participants living in the San Francisco Bay Area. 16S rRNA gene sequencing revealed significant differences between ethnic groups in bacterial richness and community structure. W individuals were enriched for the mucin-degrading Akkermansia muciniphila. EA participants had increased levels of multiple Bacteroidetes species, fermentative pathways detected by metagenomics, and the short-chain fatty acid end products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the EA and W groups could not be explained by reported dietary intake, were more pronounced for lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice confirmed that the differences in the gut microbiota of the EA and W individuals we analyzed are indeed independent of diet and that they differentially impact host body weight and adiposity in genetically identical mouse recipients.ConclusionsThe reported findings emphasize the utility of studying diverse ethnic groups within a defined geographical location and provide a starting point for dissecting the mechanisms contributing to the complex interactions between the gut microbiome and ethnicity-associated lifestyle, demographic, metabolic, and genetic factors.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3587 ◽  
Author(s):  
Erin E. Donaldson ◽  
Dragana Stanley ◽  
Robert J. Hughes ◽  
Robert J. Moore

Background The microbial populations that inhabit the gastrointestinal tract (GIT) are known to influence the health and growth performance of the host. Clean hatcheries and machine-based incubation practices in the commercial poultry industry can lead to the acquisition of aberrant microbiota in the GIT of chickens and a very high level of bird-to-bird variation. The lack of microbial profile flock uniformity presents challenges for harnessing and manipulating intestinal bacteria to better serve the host. Methods Cecal contents from high or low performing chickens were used to inoculate the surface of eggs prior to hatching and then the initial gut colonisation was monitored and subsequent changes in gut microbiota composition were followed over time. Two different cecal treatment groups were compared to an untreated control group (n = 32). Bacterial communities were characterised using high-throughput 16S rRNA gene sequencing techniques. Results Cecal microbiota transfer via egg surface application did not transfer the performance profile of the donors to the recipient birds. One of the cecal inoculations provided a more uniform gut microbiota, but this was not reproduced in the second group with a different inoculum. Development of the intestinal community was reproducible in all three groups with some genera like Lactobacillus showing no change, others like Faecalibacterium increased in abundance slowly and steadily over time and others like Enterobacter were abundant only in the first days of life. Discussion The cecal treatment reduced bird-to-bird variation in microbiota composition. Although the high FCR performance of donor birds was not transferred with the cecal microbiota, all three groups, including the control, performed better than standard for the breed. The pattern of microbiota development was similar in all three flocks, indicating that the normal processes of microbiota acquisition largely swamped any effect of the cecal material applied to eggs.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1391
Author(s):  
Yasir Iqbal ◽  
Jeremy J. Cottrell ◽  
Hafiz A.R. Suleria ◽  
Frank R. Dunshea

The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Elin Videvall ◽  
Se Jin Song ◽  
Hanna M. Bensch ◽  
Maria Strandh ◽  
Anel Engelbrecht ◽  
...  

Abstract Background Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health. Methods Here, we examine the changes that occur in the microbiome during dysbiosis in different parts of the gastrointestinal tract in a long-lived bird with high juvenile mortality, the ostrich (Struthio camelus). We evaluated the 16S rRNA gene composition of the ileum, cecum, and colon of 68 individuals that died of suspected enterocolitis during the first 3 months of life (diseased individuals), and of 50 healthy individuals that were euthanized as age-matched controls. We combined these data with longitudinal environmental and fecal sampling to identify potential sources of pathogenic bacteria and to unravel at which stage of development dysbiosis-associated bacteria emerge. Results Diseased individuals had drastically lower microbial alpha diversity and differed substantially in their microbial beta diversity from control individuals in all three regions of the gastrointestinal tract. The clear relationship between low diversity and disease was consistent across all ages in the ileum, but decreased with age in the cecum and colon. Several taxa were associated with mortality (Enterobacteriaceae, Peptostreptococcaceae, Porphyromonadaceae, Clostridium), while others were associated with health (Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Turicibacter, Roseburia). Environmental samples showed no evidence of dysbiosis-associated bacteria being present in either the food, water, or soil substrate. Instead, the repeated fecal sampling showed that pathobionts were already present shortly after hatching and proliferated in individuals with low microbial diversity, resulting in high mortality several weeks later. Conclusions Identifying the origins of pathobionts in neonates and the factors that subsequently influence the establishment of diverse gut microbiota may be key to understanding dysbiosis and host development.


2020 ◽  
Vol 8 (9) ◽  
pp. 1376
Author(s):  
Zhenting Zhang ◽  
Jiali Liu ◽  
Xuexia Jin ◽  
Chao Liu ◽  
Chenwei Fan ◽  
...  

Red swamp crayfish (Procambarus clarkii) breeding is an important economic mainstay in Hubei province, China. However, information on the gut microbiota of the red swamp crayfish is limited. To address this issue, the effect of developmental stage, diet (fermented or non-fermented feed), and geographical location on the gut microbiota composition in the crayfish was studied via high-throughput 16S rRNA gene sequencing. The results revealed that the dominant phyla in the gut of the crayfish were Proteobacteria, Bacteroidetes,Firmicutes, Tenericutes, and RsaHF231. The alpha diversity showed a declining trend during development, and a highly comparable gut microbiota clustering was identified in a development-dependent manner. The results also revealed that development, followed by diet, is a better key driver for crayfish gut microbiota patterns than geographical location. Notably, the relative abundance of Bacteroidetes was significantly higher in the gut of the crayfish fed with fermented feed than those fed with non-fermented feed, suggesting the fermented feed can be important for the functions (e.g., polysaccharide degradation) of the gut microbiota. In summary, our results revealed the factors shaping gut microbiota of the crayfish and the importance of the fermented feed in crayfish breeding.


Sign in / Sign up

Export Citation Format

Share Document