scholarly journals Gut Microbiota-Polyphenol Interactions in Chicken: A Review

Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1391
Author(s):  
Yasir Iqbal ◽  
Jeremy J. Cottrell ◽  
Hafiz A.R. Suleria ◽  
Frank R. Dunshea

The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244724
Author(s):  
Natalia Pin Viso ◽  
Enzo Redondo ◽  
Juan María Díaz Carrasco ◽  
Leandro Redondo ◽  
Julia Sabio y. Garcia ◽  
...  

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term “local microbiota” as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1908 ◽  
Author(s):  
Vincenzo Sorrenti ◽  
Sawan Ali ◽  
Laura Mancin ◽  
Sergio Davinelli ◽  
Antonio Paoli ◽  
...  

Cocoa and its products are rich sources of polyphenols such as flavanols. These compounds exert antioxidant and anti-inflammatory activities, accountable for cocoa health-promoting effects. However, cocoa polyphenols are poorly absorbed in the intestine, and most of them cannot reach the systemic circulation in their natural forms. Instead, their secondary bioactive metabolites are bioavailable, enter the circulation, reach the target organs, and exhibit their activities. In fact, once reaching the intestine, cocoa polyphenols interact bidirectionally with the gut microbiota. These compounds can modulate the composition of the gut microbiota exerting prebiotic mechanisms. They enhance the growth of beneficial gut bacteria, such as Lactobacillus and Bifidobacterium, while reducing the number of pathogenic ones, such as Clostridium perfringens. On the other hand, bioactive cocoa metabolites can enhance gut health, displaying anti-inflammatory activities, positively affecting immunity, and reducing the risk of various diseases. This review aims to summarize the available knowledge of the bidirectional interaction between cocoa polyphenols and gut microbiota with their various health outcomes.


2019 ◽  
Vol 7 (10) ◽  
pp. 374 ◽  
Author(s):  
Juan M. Diaz Carrasco ◽  
Natalia A. Casanova ◽  
Mariano E. Fernández Miyakawa

Gut microbiota and its relationship to animal health and productivity in commercial broiler chickens has been difficult to establish due to high variability between flocks, which derives from plenty of environmental, nutritional, and host factors that influence the load of commensal and pathogenic microbes surrounding birds during their growth cycle in the farms. Chicken gut microbiota plays a key role in the maintenance of intestinal health through its ability to modulate host physiological functions required to maintain intestinal homeostasis, mainly through competitive exclusion of detrimental microorganisms and pathogens, preventing colonization and therefore decreasing the expense of energy that birds normally invest in keeping the immune system active against these pathogens. Therefore, a “healthy” intestinal microbiota implies energy saving for the host which translates into an improvement in productive performance of the birds. This review compiles information about the main factors that shape the process of gut microbiota acquisition and maturation, their interactions with chicken immune homeostasis, and the outcome of these interactions on intestinal health and productivity.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Lan Sun ◽  
Run Zhu ◽  
Shiyu Zhang ◽  
Yan Wang ◽  
...  

Abstract BackgroundAs an important part of biological rhythm, the circadian rhythm of the gut microbiota plays a crucial role in host health. However, few studies have determined the associations between the circadian rhythm and gut microbiota in laying hens. The purpose of this experiment was to investigate the circadian rhythm of the feces microbiota in laying hens.ResultsFeces samples were collected from ten laying hens at nine different time points (06:00-12:00-18:00-00:00-06:00-12:00-18:00-00:00-06:00) to demonstrate the diurnal oscillation of the feces microbiota. We described the phenomenon of circadian rhythmicity of the feces microbiota in laying hens based on 16S rRNA gene sequencing. According to the results, the α and β diversity of the feces microbiota fluctuated significantly at different time points. Beta Nearest Taxon Index analysis suggested that assembly strategies of the abundant and rare amplicon sequence variants (ASVs) sub-communities are different. Abundant ASVs preferred disperal limitation (weak selction), whereas rare ASVs randomly formed due to the “non-dominant” fractions. Highly robust circadian fluctuations were found, for instance, in Firmicutes and Proteobacteria, which fluctuated oppositely, and the total ratio remained in a dynamic balance over 48 h. We found that temporal dynamic changes had a significant effect on the relative abundance of the important bacteria in the feces microbiota community by using the random forest algorithm. Eight bacteria, Ruminococcus gnavus, Faecalibacterium, Ruminococcaceae, Enterococcus cecorum, Lachnospiraceae, Clostridium, Clostridiales, and Megamonas, gained rhythmicity. Interestingly, one unexpected finding was the fact that these eight bacteria all belong to Firmicutes. In particular, the microbiota profile appears to favor butyrate production, a common indicator of gut health, potentially through increases in the members of Lachnospiraceae, Faecalibacterium and Ruminococcaceae. The pathways were the functionalities that gained rhythmicity within the microbiota, which belonged to the most abundant functions, including xenobiotic biodegradation and metabolism, carbohydrate metabolism, and amino acid metabolism, which were consistent with the metabolic functions of amino acids and carbohydrates from feed.ConclusionThis study has shown that the defecation time could be among the important factors influencing the diversity, proportion, and functions of the feces microbiota community. We also note the potential application of beneficial microbial communities in livestock species, especially in the environment of raising antibiotic-free animals. These results provide references for further exploring the circadian rhythm of the gut microbiota in laying hens.


2019 ◽  
Author(s):  
Mengfei Peng ◽  
Zajeba Tabashsum ◽  
Puja Patel ◽  
Cassandra Bernhardt ◽  
Chitrine Biswas ◽  
...  

AbstractProbiotics are recognized to outcompete pathogenic bacteria by receptor-mediated colonizing and secreting functional metabolites which have direct antimicrobial activities towards pathogens and/or improving host’s gut health and immunity. We have constructed aLactobacillus casei(LC) probiotic strain, LC+mcra, by insertingmcra(myosin cross-reactive antigen) gene, which stimulates the conversion of conjugated linoleic acids. In this study, we evaluated the protective roles of LC+mcraagainst pathogenicSalmonella entericaserovar Typhimurium (ST) and enterohaemorrhagicE. coli(EHEC) infection in BALB/cJ mice. Through a series ofin vivoinvestigation, we observed that LC+mcracolonized efficiently in mice gut and competitively reduced the infection with ST and EHEC in various locations of small and large intestine, specifically cecum, jejunum, and ileum (p<0.05). The cecal microbiota in ST-challenged mice with LC+mcraprotection were positively modulated with higher relative abundances Firmicutes but lower Proteobacteria plus increased bacterial species diversity/richness based on 16S metagenomic sequencing. Based on cytokine gene expression analysis by qRT-PCR, mice pretreated with LC+mcrawere found with attenuated bacterial pathogen-induced gut inflammation. Furthermore, mice fed LC+mcradaily for one week could protect themselves from the impairments caused by enteric infections with ST or EHEC. These impairments include weight loss, negative hematological changes, intestinal histological alterations, and potential death. Thisin vivostudy suggests that daily consumption of novel conjugated linoleic acids over-producing probiotic might be efficient in improving gut intestinal microbiome composition and preventing/combating foodborne enteric bacterial infections with pathogenicSalmonellaand diarrheagenicE. coli.Author summaryNumerous bacteria colonize throughout the gastrointestinal tract and form a complex microbial ecosystem known as gut microbiota. A balanced microbial composition is crucial for maintaining proper gut health and host defense against pathogenic microbes. However, enteric bacterial infections could cause illness and even lead to death of host when foodborne pathogens likeSalmonellaand enterohaemorrhagicE. coli(EHEC) invade gut intestine and cause imbalance of gut microbiota. Beneficial microbes in gastrointestinal tract such asLactobacillusand their secreted bio-active metabolites, are potential bio-agents to improve gut immunity and outcompete bacterial pathogens. In this study, to evaluate roles of novelLactobacillusstrain LC+mcrawhich produce higher amount of a group of beneficial secondary metabolites called conjugated linoleic acids, we have shown that daily oral administration of this LC+mcrafor one-week in mice lead to higher proportion of beneficial bacterial colonization in different locations of intestine and a significant reduction of pathogenicSalmonellaand EHEC colonization. Furthermore, mice fed with LC+mcrarestore and modulateSalmonellainfection-induced negative impact on gut microbiota composition and protect themselves from various levels of physiological damage.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Czech ◽  
Eugeniusz Ryszard Grela ◽  
Martyna Kiesz

AbstractThe aim of the study was to assess the effect of fermented dried soybean (FSBM) and/or fermented rapeseed meal (FRSM) in diets for weaned piglets on production results, nutrient digestibility, gastrointestinal tract histology, and the composition of the gut microbiota. Piglets in the control group received standard diets with soybean meal. Animals in all experimental groups received diets in which a portion of the soybean meal was replaced: in group FR—8% FRSM; in group FR/FS—6% FRSM and 2% FSBM; in group FS/FR—2% FRSM and 6% FSBM and in group FS—8% FSBM. The use of 8% FRSM or 6% FRSM and 2% FSBM in the piglet diets had a positive effect on average daily gains. Piglets from the FR and FR/FS groups had the highest feed conversion rate. Group FS/FR and FS piglets had significantly lower mortality and lower incidence of diarrhoea. Piglets fed a diet with the fermented components, in particular with 8% FRSM or 6% FRSM and 2% FSBM, exhibited a positive effect on the microbiological composition and histology of intestines, which resulted in improved nutrient digestibility coefficients (ATTD and AID).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3907
Author(s):  
Sergio Pérez-Burillo ◽  
Beatriz Navajas-Porras ◽  
Alicia López-Maldonado ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.


Sign in / Sign up

Export Citation Format

Share Document