scholarly journals Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0245143
Author(s):  
Anna-Karina B. Maier ◽  
Nadine Reichhart ◽  
Johannes Gonnermann ◽  
Norbert Kociok ◽  
Aline I. Riechardt ◽  
...  

Tumor necrosis factor (TNF)α is an inflammatory cytokine likely to be involved in the process of corneal inflammation and neovascularization. In the present study we evaluate the role of the two receptors, TNF-receptor (TNF-R)p55 and TNF-Rp75, in the mouse model of suture-induced corneal neovascularization and lymphangiogenesis. Corneal neovascularization and lymphangiogenesis were induced by three 11–0 intrastromal corneal sutures in wild-type (WT) C57BL/6J mice and TNF-Rp55-deficient (TNF-Rp55d) and TNF-Rp75-deficient (TNF-Rp75d) mice. The mRNA expression of VEGF-A, VEGF-C, Lyve-1 and TNFα and its receptors was quantified by qPCR. The area covered with blood- or lymphatic vessels, respectively, was analyzed by immunohistochemistry of corneal flatmounts. Expression and localization of TNFα and its receptors was assessed by immunohistochemistry of sagittal sections and Western Blot. Both receptors are expressed in the murine cornea and are not differentially regulated by the genetic alteration. Both TNF-Rp55d and TNF-Rp75d mice showed a decrease in vascularized area compared to wild-type mice 14 days after suture treatment. After 21 days there were no differences detectable between the groups. The number of VEGF-A-expressing macrophages did not differ when comparing WT to TNF-Rp55d and TNF-Rp75d. The mRNA expression of lymphangiogenic markers VEGF-C or LYVE-1 does not increase after suture in all 3 groups and lymphangiogenesis showed a delayed effect only for TNF-Rp75d. TNFα mRNA and protein expression increased after suture treatment but showed no difference between the three groups. In the suture-induced mouse model, TNFα and its ligands TNF-Rp55 and TNF-Rp75 do not play a significant role in the pathogenesis of neovascularisation and lymphangiogenesis.

2021 ◽  
Author(s):  
Jun Zhou ◽  
Yuhui Que ◽  
Lihua Pan ◽  
Xu Li ◽  
Chao Zhu ◽  
...  

Abstract Supervillin (SVIL), the largest member of villin/gelsolin family, is an actin-binding and membrane-associated protein, that can also be localized to the nucleus. It has been reported that the mRNA expression of SVIL in neutrophils could be increased by lipopolysaccharide (LPS), but the underlying mechanisms remain unknown. Moreover, SVIL was also observed to be involved in the regulation of macrophages’ movement. However, it is not clear whether SVIL is involved in the LPS-induced inflammatory response in macrophages. This work was to investigate the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. Our data showed that in THP-1-derived macrophages, LPS stimulation significantly increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) completely reversed the expression of SVIL and inflammatory cytokines (IL-6, IL-1β and TNF-α) induced by LPS. Additionally, ERK1/2 and NF-κB inhibitors (U0126 and BAY) significantly reduced SVIL and IL-6, IL-1β & TNF-α expression. Furthermore, down-regulation of SVIL by SVIL-specific shRNA significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS. Taken together, as a downstream molecule of TLR4/NF-κB and ERK1/2, SVIL was involved in the inflammatory response of LPS-induced elevated IL-6, IL-1β and TNF-α in macrophages.


2021 ◽  
Author(s):  
Wai W Cheung ◽  
Ronghao Zheng ◽  
Sheng Hao ◽  
Zhen Wang ◽  
Alex Gonzalez ◽  
...  

Abstract Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β −/−/CKD, Il6−/−/CKD and Tnfα −/−/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β −/−/CKD mice but were only partially rescued in Il6−/−/CKD and Tnfα −/−/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg.kg.day, IP) or saline for 6 weeks and compared with WT/sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.


2009 ◽  
Vol 83 (16) ◽  
pp. 8004-8011 ◽  
Author(s):  
Young-Sun Lee ◽  
Na Li ◽  
Seungjin Shin ◽  
Hee-Sook Jun

ABSTRACT The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.


2020 ◽  
Vol 4 (s1) ◽  
pp. 95-95
Author(s):  
Sunita N Misra ◽  
Theresa M. Czech ◽  
Jennifer A. Kearney

OBJECTIVES/GOALS: Variants in voltage-gated sodium channels (VGSC) are a common cause of severe early onset epilepsy. Changes in CSF neurotransmitters (NT) were identified in 2 cases of VGSC-related epilepsy. Here we investigate NT changes in patients and a novel mouse model of VGSC-related epilepsy. METHODS/STUDY POPULATION: We conducted a single site IRB approved retrospective chart review of patients with VGSC-related epilepsy who underwent CSF NT testing for diagnostic purposes. In parallel, we examined NT levels from the brains of wild-type (WT) and a novel VGSC-related epilepsy mouse model after obtaining IACUC approval. We rapidly isolated forebrain, cortex, striatum, and brainstem from 5-6 animals per sex and genotype. A combination of HPLC with electrochemical detection and mass spectrometry were used to quantify NT levels from brain samples. RESULTS/ANTICIPATED RESULTS: We identified 10 patients with VGSC-related epilepsy who received CSF NT testing. Two of these patients had abnormal NT results including changes to dopamine (DA) or serotonin (5-HT) metabolites. We analyzed NT levels from four brain regions from male and female WT and VGSC-related epilepsy mice. We anticipate that most of the NT levels will be similar to WT, however subtle changes in the DA or 5-HT metabolites may be seen in VGSC-related epilepsy. DISCUSSION/SIGNIFICANCE OF IMPACT: Patients with VGSC-related epilepsy often have autism spectrum disorder, sleep, and movement disorders. Understanding the role of aberrant NT levels in VGSC-related epilepsy may provide additional therapeutic targets that address common neuropsychological comorbidities as well as seizures.


2004 ◽  
Vol 287 (1) ◽  
pp. G264-G273 ◽  
Author(s):  
Atul Sahai ◽  
Padmini Malladi ◽  
Hector Melin-Aldana ◽  
Richard M. Green ◽  
Peter F. Whitington

The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-α, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1–4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-α expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-β and TNF-α. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN−/− mice when compared with OPN+/+ mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.


2020 ◽  
Vol 21 (15) ◽  
pp. 5515
Author(s):  
Kento Fujii ◽  
Yasuko Yamamoto ◽  
Yoko Mizutani ◽  
Kuniaki Saito ◽  
Mariko Seishima

Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.


2014 ◽  
Vol 306 (6) ◽  
pp. L508-L520 ◽  
Author(s):  
David I. Kasahara ◽  
Hye Y. Kim ◽  
Joel A. Mathews ◽  
Norah G. Verbout ◽  
Alison S. Williams ◽  
...  

Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient ( Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/−mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 ( Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/−vs. wild-type mice, but reduced in Adipo−/−/IL-6−/−vs. Adipo−/−mice. IL-17A+F4/80+cells and IL-17A+γδ T cells were also reduced in Adipo−/−/IL-6−/−vs. Adipo−/−mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/−vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c−cells, whereas in Adipo−/−mice F4/80+CD11c+cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 ( Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/−vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/−vs. wild-type mice but reduced in Adipo−/−/IL-6−/−vs. Adipo−/−mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/−mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF.


2021 ◽  
Vol 22 (4) ◽  
pp. 1583
Author(s):  
Igor A. Butovich ◽  
Amber Wilkerson ◽  
Seher Yuksel

Previous studies on ablation of several key genes of meibogenesis related to fatty acid elongation, omega oxidation, and esterification into wax esters have demonstrated that inactivation of any of them led to predicted changes in the meibum lipid profiles and caused severe abnormalities in the ocular surface and Meibomian gland (MG) physiology and morphology. In this study, we evaluated the effects of Soat1 ablation that were expected to cause depletion of the second largest class of Meibomian lipids (ML)—cholesteryl esters (CE)—in a mouse model. ML of the Soat1-null mice were examined using liquid chromatography high-resolution mass spectrometry and compared with those of Soat1+/− and wild-type mice. Complete suppression of CE biosynthesis and simultaneous accumulation of free cholesterol (Chl) were observed in Soat1-null mice, while Soat1+/− mutants had normal Chl and CE profiles. The total arrest of the CE biosynthesis in response to Soat1 ablation transformed Chl into the dominant lipid in meibum accounting for at least 30% of all ML. The Soat1-null mice had clear manifestations of dry eye and MG dysfunction. Enrichment of meibum with Chl and depletion of CE caused plugging of MG orifices, increased meibum rigidity and melting temperature, and led to a massive accumulation of lipid deposits around the eyes of Soat1-null mice. These findings illustrate the role of Soat1/SOAT1 in the lipid homeostasis and pathophysiology of MG.


2002 ◽  
Vol 283 (1) ◽  
pp. R218-R226 ◽  
Author(s):  
Alexander V. Gourine ◽  
Valery N. Gourine ◽  
Yohannes Tesfaigzi ◽  
Nathalie Caluwaerts ◽  
Fred Van Leuven ◽  
...  

α2-Macroglobulin (α2M) is not only a proteinase inhibitor in mammals, but it is also a specific cytokine carrier that binds pro- and anti-inflammatory cytokines implicated in fever, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). To define the role of α2M in regulation of febrile and cytokine responses, wild-type mice and mice deficient in α2M (α2M −/−) were injected with lipopolysaccharide (LPS). Changes in body temperature as well as plasma levels of IL-1β, IL-6, and TNF-α and hepatic TNF-α mRNA level during fever in α2M −/− mice were compared with those in wild-type control mice. The α2M −/− mice developed a short-term markedly attenuated (ANOVA, P < 0.05) fever in response to LPS (2.5 mg/kg ip) compared with the wild-type mice. At 1.5 h after injection of LPS, the plasma concentration of TNF-α, but not IL-1β or IL-6, was significantly lower (by 58%) in the α2M −/− mice compared with their wild-type controls (ANOVA, P < 0.05). There was no difference in hepatic TNF-α mRNA levels between α2M −/− and wild-type mice 1.5 h after injection of LPS. These data support the hypotheses that 1) α2M is important for the normal development of LPS-induced fever and 2) a putative mechanism of α2M involvement in fever is through the inhibition of TNF-α clearance. These findings indicate a novel physiological role for α2M.


2012 ◽  
Vol 302 (10) ◽  
pp. G1133-G1142 ◽  
Author(s):  
Masashi Yasuda ◽  
Shinichi Kato ◽  
Naoki Yamanaka ◽  
Maho Iimori ◽  
Daichi Utsumi ◽  
...  

Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1β, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document