scholarly journals Efficacy of a nanoparticle vaccine administered in-ovo against Salmonella in broilers

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247938
Author(s):  
Keila Acevedo-Villanueva ◽  
Sankar Renu ◽  
Renukaradhya Gourapura ◽  
Ramesh Selvaraj

Salmonella is a zoonotic pathogen that persists in poultry. Salmonella vaccines that can be delivered in-ovo can be cost-effective and can decrease Salmonella load in poultry. This study evaluates the efficacy of a Salmonella chitosan-nanoparticle (CNP) vaccine, administered in-ovo, in broilers. CNP vaccine was synthesized with Salmonella Enteritidis (SE) outer-membrane-proteins (OMPs) and flagellin proteins. At embryonic-d18, one-hundred-thirty-six eggs were injected with 200μl PBS or 1000μg CNP into the amniotic cavity. At d1-of-age, 132 chicks were allocated in 6 pens/treatment with 11 chicks/pen. At d7, birds were orally challenged with 1×109 CFU/bird SE. At d1, 8h-post-challenge, d14, and d21, serum anti-SE-OMPs IgY were analyzed. At d14 and d21, cloacal swabs and bile anti-SE-OMPs IgA, CD4+/CD8+-T-cell ratios, and ceca SE loads were analyzed. At d21, cecal tonsil IL-1β, IL-10, and iNOS mRNA were analyzed. Body-weight-gain (BWG) and feed-conversion-ratio (FCR) were recorded weekly. Data were analyzed by Student’s t-test at P<0.05. There were no significant differences in BWG or FCR between vaccinated birds compared to control. At d1, CNP-vaccinated birds had 5.62% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 8h-post-challenge, CNP-vaccinated birds had 6.39% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 2wk-post-challenge, CNP-vaccinated birds had 7.34% lower levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 1wk-post-challenge, CNP-vaccinated birds had 15.30% greater levels (P<0.05) of bile anti-SE-OMPs IgA, compared to control. At d14 and d21, CNP-vaccinated birds had 0.62 and 0.85 Log10 CFU/g, decreased SE ceca load (P<0.05), respectively, compared to control. There were no significant differences in CD4+/CD8+-T-cell ratios between vaccinated birds compared to control. There were no significant differences in IL-1β, IL-10, iNOS mRNA between vaccinated birds compared to control. Findings demonstrate that the in-ovo administration of CNP vaccine can induce an antigen-specific immune response against SE and can decrease SE cecal load in broilers.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259334
Author(s):  
Keila Y. Acevedo-Villanueva ◽  
Sankar Renu ◽  
Revathi Shanmugasundaram ◽  
Gabriel O. Akerele ◽  
Renukaradhy J. Gourapura ◽  
...  

Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S. Enteritidis) outer-membrane-proteins (OMPs) and flagellin-proteins. At d1-of-age, one-hundred-sixty-eight chicks were allocated into treatments: 1) No vaccine, 2) Live vaccine (Poulvac®ST), 3) CNP vaccine, 4) Live+CNP vaccine. At d1-of-age, birds were orally vaccinated with PBS, Live vaccine, or CNP. At d7-of-age, the No vaccine, Live vaccine and CNP vaccine groups were boosted with PBS and the Live+CNP vaccine group was boosted with CNP. At d14-of-age, birds were challenged with 1×109 CFU/bird S. Enteritidis. There were no significant differences in body-weight-gain (BWG) or feed-conversion-ratio (FCR). At 8h-post-challenge, CNP and Live+CNP-vaccinated birds had 17% and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d28-of-age, CNP, Live, and Live+CNP-vaccinated birds had 33%, 18%, and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d14-of-age, Live+CNP-vaccinated birds had 46% greater levels (P<0.05) of anti-Salmonella OMPs IgY in serum, compared to control. At d21-of-age, splenocytes from CNP and Live-vaccinated birds had increased (P<0.05) T-lymphocyte proliferation at 0.02 mg/mL OMPs stimulation compared to the control. At d28-of-age, CNP and Live+CNP-vaccinated birds had 0.9 Log10 CFU/g and 1 Log10 CFU/g decreased S. Enteritidis cecal loads (P<0.05), respectively, compared to control. The CNP vaccine does not have adverse effects on bird’s BWG and FCR or IL-1β, IL-10, IFN-γ, or iNOS mRNA expression levels. It can be concluded that the CNP vaccine, as a first dose or as a booster vaccination, is an alternative vaccine candidate against S. Enteritidis in broilers.


2020 ◽  
Vol 9 (8) ◽  
pp. e43985178
Author(s):  
Gabriela Medeiros Dal’Alba ◽  
Cleiton Melek ◽  
Maiara Schneider ◽  
Guilherme Luiz Deolindo ◽  
Marcel Manente Boiago ◽  
...  

The objective of this study was to determine whether inoculating honey from Apis mellifera into broiler chick eggs (in ovo nutrition) during incubation would improve hatchability and performance. Initially, four hundred eggs were incubated; at 12 days of incubation, ovoscopy was performed to select the fertile eggs and divide them into three groups: control, saline and honey groups. On the 17th day of incubation we inoculated 0.2 mL of each solution directly into the amniotic cavity. After hatching, the chicks were housed in an experimental house until 28 days of age, when two birds per experimental unit were sacrificed to evaluate carcass yield. The hatchability was not affected by inoculation of saline or honey (p>0.05). However, mortality was higher in the honey and saline groups than in the control group (p<0.05). The birds that received in ovo nutrition with bee honey had a body weight 11% higher than 28 days compared to the control. The honey group showed better feed conversion and greater heart weight at 28 days (p<0.05). Mortality, carcass yield and bowel variables did not differ between treatments (p>0.05). These results show that the in ovo nutrition with bee honey resulted in lower production costs, that is, the birds consumed less food (feed) and had the same weight gain as other treatments.


2015 ◽  
Vol 31 (1) ◽  
pp. 46-54
Author(s):  
N Sultana ◽  
SMJ Hossain ◽  
S Sultana ◽  
MR Hassan

The present study was conducted to evaluate the effect of different milk replacers on the performance of kids. In a 60-day feeding trial, twenty kids of both sexes (15 days of age and average 1.9 ± 0.4 kg BW) were divided into four groups having five kids in each and were assigned to four treatments: milk replacer prepared using shoti (Curcuma zedoaria) powder (T1), milk replacer prepared using fresh eggs and wheat flower (T2) and milk replacer prepared from skim milk powder (T3). Total DM and milk DM intake were significantly (P<0.001) higher in T1 than T3, T0 and T2 groups. ME and MP intake were significantly (P<0.05) higher in T1 than the other three groups. Average daily gain was significantly (P<0.05) higher in T1 compared to T2 and T3 groups, while control was intermediate. Body weight gain of T2 and T3 group increased up to 5th week and declined thereafter. Feed conversion efficiency did not differ significantly between groups. DM and OM digestibility was significantly (P<0.05) higher in T1 group. N retention (as percentage of N-intake) was lower in T3 group. Costs for T0, T1, T2 and T3 groups were 4.7, 9.0, 36.6 and 4.7 Tk/100g (or 0.054, 0.113, 0.456 and 0.054 $/100g) mixed dry milk replacer. Since the supplementation of milk replacer did not affect weight gain, FCR and nutrient utilization, milk replacer was cost-effective. Therefore, shoti and egg + wheat can be fed to goat kids as an alternative to goat milk. DOI: http://dx.doi.org/10.3329/bvet.v31i1.22842 Bangl. vet. 2014. Vol. 31, No. 1, 46-54


2016 ◽  
Vol 3 (1) ◽  
pp. 127-137
Author(s):  
Abdullah Al Masud ◽  
Md Shawkat Ali ◽  
Muslah Uddin Ahammad

The effect of feeding probiotic (Bio-Top; Bacillus subtilis and Bacillus licheniformis), acidifier (Sal-Stop), antibiotic growth promoter (AGP) or probiotic plus acidifier was investigated in commercial broiler. A total of four hundred Cobb 500 day-old straight run chicks were randomly distributed to 5 different dietary groups having 4 replications each. The number of birds in each replication was 20. The five dietary groups were as control (basal diet; BD), BD containing AGP at a level of 20g/100kg, BD containing probiotic at a level of 200g/100kg, BD containing acidifier at a level of 200g/100kg; and BD containing an equal amount of probiotic plus acidifier (200g/100kg). Broilers that received either probiotic, acidifier or a mixture of probiotic and acidifier (1:1) exhibited higher body weight gain, lower feed conversion ratio (FCR) and higher costeffectiveness compared with the broilers fed on control diet (P<0.05). However, feeding of diet containing both probiotic and acidifier resulted in the highest growth rate and net profit in all dietary regimens. Broilers fed on probiotic and acidifier in a mixture had FCR similar to other treatment groups. This study indicated that the diet containing probiotic-acidifier mixture seems to be more cost-effective in promoting growth performance of broilers, as an alternative to the AGP, as compared to the use of probiotic or acidifier alone in the dietRes. Agric., Livest. Fish.3(1): 127-137, April 2016


2012 ◽  
Vol 2 (1) ◽  
pp. 21-27
Author(s):  
Yosi Fenita

The objective of the research was to evaluate to effect of feeding mengkudu on performances of broilers. The research design used was completely randomized design. One hundred broilers were distributed into five treatments. The treatments were different levels of mengkudu meal (0, 0.75%, 1.5%, 2.25 % and 3%). The observed measured were feed consumption, average body weight (gain) and feed conversion. Results showed that feeding mengkudu (Morinda Citrifolia L.)  no effect significant (P>0.05) on feed consumption, average body weight and feed conversion.  In conclusion, feeding mengkudu meal up to 3% (in diet) does not negatively affect feed consumption, average body weight, and feed conversion.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 878
Author(s):  
Ling Zhao ◽  
Jiang Deng ◽  
Zi-Jian Xu ◽  
Wan-Po Zhang ◽  
Mahmoud Mohamed Khalil ◽  
...  

The objective of this study was to explore the mechanism of Hedyotis diffusa (HD) in mediating the detoxification of aflatoxin B1 (AFB1)-induced hepatic injury in chicks. A total of 144 one-day-old male broilers (Cobb 500) were randomly assigned to four treatment groups (n = 6 cages/diet, 6 chicks/cage). After three days of acclimation, the broilers were fed either a control diet (Control), Control plus 0.5 mg/kg of AFB1, or Control plus 0.5 mg/kg AFB1 with 500 or 1000 mg/kg HD for two weeks. Both serum and liver were collected at the end of the feeding trial for biochemistry, histology, and NF-E2-related nuclear factor 2 (NRF2)/antioxidant response element (ARE) signaling analysis. Compared with Control, the AFB1 treatment caused liver injury and decreased (p < 0.05) body weight gain, feed intake, feed conversion ratio, and serum albumin and total protein by 6.2–20.7%. AFB1 also induced swelling, necrosis, and severe vacuolar degeneration in chicks’ livers. Notably, HD supplementation at 500 and 1000 mg/kg mitigated (p < 0.05) the alterations induced by AFB1. HD supplementation alleviated (p < 0.05) AFB1-induced impairment in hepatic glutathione peroxidase activity, protein carbonyl, and exo-AFB1-8,9-epoxide (AFBO)–DNA concentrations by 57.7–100% and increased (p < 0.05) the activities of superoxide dismutase and catalase by 23.1–40.9% more than those of AFB1 treatment alone. Furthermore, HD supplementation at the two doses upregulated (p < 0.05) NRF2, NAD(P)H: quinone oxidoreductase-1, heme oxygenase-1, glutathione cysteine ligase catalytic subunit, and glutathione-S transferase A2 and A3 in livers relative to the AFB1 group by 0.99–3.4-fold. Overall, dietary supplementation of HD at a high dose displayed better protection effects against aflatoxicosis. In conclusion, a dietary HD supplementation at 500 and 1000 mg/kg protected broilers from AFB1-induced hepatotoxicity, potentially due to the activation of NRF2/ARE signaling in the chicks.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1511
Author(s):  
Joseph P. Gulizia ◽  
Kevin M. Downs

Two trials were conducted to determine feed color effects on broiler performance. A completely randomized design was used. Trial 1 included four treatments: control (complete broiler starter diet), red, green, and blue; and Trial 2 included four treatments: control, orange, yellow, and purple. Each trial had 4 treatments with 4 replicates (60 birds/treatment) fed to 240 male Cobb 500 broilers during a 21 d grow out. Data were analyzed using the GLM procedure. In Trial 1, there were no treatment effects on average body weight, body weight gain, and feed consumption (p > 0.05). Adjusted feed conversion for control (1.23) was less than red (1.27; p = 0.001) and green (1.26; p = 0.009), with blue (1.25; p = 0.056) tending to be different during the experimental period. In Trial 2, there were no treatment effects on average body weight, feed consumption, and adjusted feed conversion during this study (p > 0.05). Body weight gain between d 1 to 14 for purple (490.78 g/bird) was more than orange (467 g/bird; p = 0.013) and yellow (461 g/bird; p= 0.004), with control (474 g/bird; p = 0.052) tending to be different. Results indicate that these feed colors had some, albeit limited, influence on broiler performance parameters.


2021 ◽  
Vol 9 (6) ◽  
pp. 1341
Author(s):  
Sarayu Bhogoju ◽  
Collins N. Khwatenge ◽  
Thyneice Taylor-Bowden ◽  
Gabriel Akerele ◽  
Boniface M. Kimathi ◽  
...  

There are well documented complications associated with the continuous use of antibiotics in the poultry industry. Over the past few decades, probiotics have emerged as viable alternatives to antibiotics; however, most of these candidate probiotic microorganisms have not been fully evaluated for their effectiveness as potential probiotics for poultry. Recent evaluation of a metagenome of broiler chickens in our laboratory revealed a prevalence of Lactobacillus reuteri (L. reuteri) and Actinobacteria class of bacteria in their gastrointestinal tract. In this study Lactobacillus reuteri and Streptomyces coelicolor (S. coelicolor) were selected as probiotic bacteria, encapsulated, and added into broiler feed at a concentration of 100 mg/kg of feed. In an 8-week study, 240 one day-old chicks were randomly assigned to four dietary treatments. Three dietary treatments contained two probiotic bacteria in three different proportions (L. reuteri and S. coelicolor individually at 100 ppm, and mixture of L. reuteri and S. coelicolor at 50 ppm each). The fourth treatment had no probiotic bacteria and it functioned as the control diet. L. reuteri and S. coelicolor were added to the feed by using wheat middlings as a carrier at a concentration of 100 ppm (100 mg/kg). Chickens fed diets containing L. reuteri and S. coelicolor mixture showed 2% improvement in body weight gain, 7% decrease in feed consumption, and 6–7% decrease in feed conversion ratios. This research suggests that L. reuteri and S. coelicolor have the potential to constitute probiotics in chickens combined or separately, depending on the desired selection of performance index.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1364
Author(s):  
Chris Major Ncho ◽  
Akshat Goel ◽  
Chae-Mi Jeong ◽  
Mohamed Youssouf ◽  
Yang-Ho Choi

The aim of this study was to explore the outcomes of an in ovo GABA injection in broilers challenged with HS. In Experiment 1, 210 Arbor Acres eggs were allocated to five treatments: no-injection, and in ovo injection of 0.6 mL of 0%, 5%, 10%, or 20% of GABA. Hatchling weight and CWEWR were significantly increased in the 5% GABA group. In ovo, injection of 10% GABA solution caused a significant decrease in plasma cholesterol and increased plasma total antioxidant capacity of hatchlings. Experiment 2 was conducted with 126 fertile Arbor Acres eggs distributed into one of two groups. At 17.5 days of incubation, one received no injection, and the other was fed 0.6 mL of 10% GABA. On day 10, one subgroup (4 replicates * 3 birds) from each treatment was submitted to HS (38 ± 1 °C for 3 h) while the other was kept at a thermoneutral temperature (29 ± 1 °C). An in ovo injection of GABA significantly increased total antioxidant capacity, but reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP with HS. In conclusion, an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and enhances antioxidant status while downregulating the expression of HSP70 and fatty acid metabolism-related genes in young chicks under HS.


Sign in / Sign up

Export Citation Format

Share Document