scholarly journals Phylogenetic and evolutionary analysis of dengue virus serotypes circulating at the Colombian–Venezuelan border during 2015–2016 and 2018–2019

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252379
Author(s):  
Marlen Yelitza Carrillo-Hernandez ◽  
Julian Ruiz-Saenz ◽  
Lucy Jaimes-Villamizar ◽  
Sara Maria Robledo-Restrepo ◽  
Marlen Martinez-Gutierrez

Dengue is an endemic disease in Colombia. Norte de Santander is a region on the border of Colombia and Venezuela and has reported the co-circulation and simultaneous co-infection of different serotypes of the dengue virus (DENV). This study aimed to conduct a phylogenetic analysis on the origin and genetic diversity of DENV strains circulating in this bordering region. Serum samples were collected from patients who were clinically diagnosed with febrile syndrome associated with dengue during two periods. These samples were tested for DENV and serotyping was performed using reverse transcriptase-polymerase chain reaction. Subsequently, positive samples were amplified and the envelope protein gene of DENV was sequenced. Phylogenetic and phylogeographic analyses were performed using the sequences obtained. Basic local alignment search tool analysis confirmed that six and eight sequences belonged to DENV-1 and DENV-2, respectively. The phylogenetic analysis of DENV-1 showed that the sequences belonged to genotype V and clade I; they formed two groups: in the first group, two sequences showed a close phylogenetic relationship with strains from Ecuador and Panama, whereas the other four sequences were grouped with strains from Venezuela and Colombia. In the case of DENV-2, the analysis revealed that the sequences belonged to the Asian–American genotype and clade III. Furthermore, they formed two groups; in the first group, three sequences were grouped with strains from Colombia and Venezuela, whereas the other five were grouped with strains from Venezuela, Colombia and Honduras. This phylogenetic analysis suggests that the geographical proximity between Colombia and Venezuela is favourable for the export and import of different strains among serotypes or clades of the same DENV serotype, which could favour the spread of new outbreaks caused by new strains or genetic variants of this arbovirus. Therefore, this information highlights the importance of monitoring the transmission of DENV at border regions.

2003 ◽  
Vol 185 (24) ◽  
pp. 7266-7272 ◽  
Author(s):  
Wen-Ming Chen ◽  
Lionel Moulin ◽  
Cyril Bontemps ◽  
Peter Vandamme ◽  
Gilles Béna ◽  
...  

ABSTRACT Following the initial discovery of two legume-nodulating Burkholderia strains (L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-Masson, Nature 411:948-950, 2001), we identified as nitrogen-fixing legume symbionts at least 50 different strains of Burkholderia caribensis and Ralstonia taiwanensis, all belonging to the β-subclass of proteobacteria, thus extending the phylogenetic diversity of the rhizobia. R. taiwanensis was found to represent 93% of the Mimosa isolates in Taiwan, indicating thatβ -proteobacteria can be the specific symbionts of a legume. The nod genes of rhizobial β-proteobacteria (β-rhizobia) are very similar to those of rhizobia from theα -subclass (α-rhizobia), strongly supporting the hypothesis of the unique origin of common nod genes. Theβ -rhizobial nod genes are located on a 0.5-Mb plasmid, together with the nifH gene, in R. taiwanensis and Burkholderia phymatum. Phylogenetic analysis of available nodA gene sequences clustered β-rhizobial sequences in two nodA lineages intertwined with α-rhizobial sequences. On the other hand, theβ -rhizobia were grouped with free-living nitrogen-fixingβ -proteobacteria on the basis of the nifH phylogenetic tree. These findings suggest that β-rhizobia evolved from diazotrophs through multiple lateral nod gene transfers.


2018 ◽  
Author(s):  
Yao Lin ◽  
Dehong Ma ◽  
Songjiao Wen ◽  
Fen Zeng ◽  
Shan Hong ◽  
...  

AbstractIn the context of recent arbovirus epidemics, dengue fever is becoming a greater concern around the world. In August 2017, Xishuangbanna, which is a border city of China, Burma and Laos, had its first major dengue outbreak. A total of 156 serum samples from febrile patients were collected; 97 DENV positive serum samples were screened out, and viral RNAs were successfully and directly extracted, including 77 cases from China and 20 cases from Myanmar. Phylogenetic analysis revealed that all of the strains were classified as DENV-1. There are eight epidemic dengue strains from Myanmar and 74 from Jinghong, Xishuangbanna, that were classified as cluster 1, which are the most similar to the strain of China Guangzhou 2011. There are three epidemic strains from Xishuangbanna Mengla that were classified as cluster 2, which have the closest relationship to the strain of China Hubei 2014. However, there are 12 epidemic strains from Myanmar that were classified as cluster 3, which have the closest relationship to the strain of Laos from 2008, which shows that there is a recycling epidemic trend of DENV in China. There were 236 mutations in the base, which caused 31 nonsynonymous mutations in the DENV structural protein C/prM/E genes when the strain of Xishuangbanna and Myanmar were compared with the DENV-1SS. There is no clear homologous recombination signal among these stains. Homology modeling possibly predicted a three-dimensional structure of the structural protein of these strains and revealed that they had the same three-dimensional structure and all had five predicted protein binding sites, but there are differences in binding site 434 (DENV-1SS: Thr434, DV-Jinghong: Ser434, DV-Myanmar: Ser434, DV-Mengla: Ser434). The results of the molecular clock phylogenetic and demographic reconstruction analysis show that DENV-1 became highly diversified in 1972 followed by a slightly decreased period until 2017. In conclusion, our study lays the foundation for studying the global evolution and prevalence of DENV.Author SummaryDengue fever (DF) is a mosquito-borne illness caused by a flavivirus. Human infections with Dengue virus (DENV) could cause fever, cutaneous rash and malaise. Xishuangbanna, which is located in the southwestern Yunnan Province and is a border city with China, Burma and Laos, was reported to have outbreak of DENV in 2013 and 2015 with different types. However, there was a large outburst of dengue in May 2017. To understand the genetic characterization, potential source and evolution of the virus, 156 serum samples were analyzed. We focused on: (i) Phylogenetic analysis of the structural protein genes sequences; (ii) Mutation, recombination analysis and predicted protein binding sites of the structural protein genes; (iii) Molecular clock and demographic reconstruction of global dengue virus serotype 1(DENV-1). Our results indicated that this is the first outbreak of DENV-1 in Xishuangbanna, dengue epidemic strains on the Burma border of China show diversification, we found a virulence site changed from I to T(amino acid position: 440), which may lead to weakened virulence of the epidemic strains. We found that the evolution of DENV-1 is dominated by regional evolution. What’s more, DENV-1 became highly diversified in 1972 followed by a slightly decreased period until 2017.


2021 ◽  
Author(s):  
Walter Miding'a Essendi ◽  
Charles Inyagwa Muleke ◽  
Miheso Manfred ◽  
Elick Onyango Otachi

Abstract Cryptosporidium spp. cause Cryptosporidiosis in humans through zoonotic and anthroponotic transmission. Previous studies have illustrated the significance of domestic animals as reservoirs of this parasite. However, there is no information on the Cryptosporidium spp. and genotypes circulating in Njoro Sub County. A total of 2174 samples from humans, cattle, chicken, sheep and goats were assessed for presence of Cryptosporidium spp. Thirty-three positive samples were successfully sequenced. The sequences obtained were compared to Cryptosporidium sequences in the GenBank using NCBI’s (National Center for Biotechnology Information) online BLAST (Basic Local Alignment Search Tool) algorithmic program. Sequence alignment was done using the Clustal W program and phylogenetic analysis was executed in MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The Cryptosporidium spp. present in the watershed showed great genetic diversity with nine (9) Cryptosporidium spp. namely: C. parvum, C. hominis, C. ubiquitum, C. meleagridis, C. andersoni, C. baileyi, C. muris, C. xiaoi and C. viatorum. Cattle were the biggest reservoirs of zoonotic Cryptosporidium spp. hence a potential source of zoonosis in humans while goats had the least species. This is the first study that reported presence of C. viatorum in Kenya.


2019 ◽  
Author(s):  
S Pollett ◽  
K Gathii ◽  
K Figueroa ◽  
W Rutvisuttinunt ◽  
A Srikanth ◽  
...  

AbstractKenya experiences a substantial burden of dengue, yet there are very few DENV-2 sequence data available from this country and indeed the entire continent of Africa. We therefore undertook whole genome sequencing and evolutionary analysis of fourteen dengue virus (DENV)-2 strains sampled from Malindi sub-County Hospital during the 2017 DENV-2 outbreak in the Kenyan coast. We further performed an extended East African phylogenetic analysis, which leveraged 26 complete African env genes. Maximum likelihood analysis showed that the 2017 outbreak was due to the Cosmopolitan genotype, indicating that this has been the only confirmed human DENV-2 genotype circulating in Africa to date. Phylogeographic analyses indicated transmission of DENV-2 viruses between East Africa and South/South-West Asia. Time-scaled genealogies show that DENV-2 viruses are spatially structured within Kenya, with a time-to-most-common-recent ancestor analysis indicating that these DENV-2 strains were circulating for up to 5.38 years in Kenya before detection in the 2017 Malindi outbreak. Selection pressure analyses indicated sampled Kenyan DENV strains uniquely being under positive selection at 6 sites, predominantly across the non-structural genes, and epitope prediction analyses showed that one of these sites corresponds to a putative predicted MHC-I CD8+ DENV-2 Cosmopolitan virus epitope only evident in a sampled Kenyan virus. Taken together, our findings indicate that the 2017 Malindi DENV-2 outbreak arose from a strain which had circulated for several years in Kenya before recent detection, has experienced diversifying selection pressure, and may contain new putative immunogens relevant to vaccine design. These findings prompt further genomic epidemiology studies in this and other Kenyan locations to further elucidate the transmission dynamics of DENV in this region.Author summary (non-technical)Kenya experiences a substantial burden of dengue, yet the patterns of dengue spread in this region are unclear. Evolutionary analyses of dengue virus strain sequences could offer major insights into the spread of dengue viruses in this region, but there are very few DENV-2 sequence data available from this country and indeed the entire continent of Africa. We therefore undertook whole genome sequencing and evolutionary analysis of fourteen dengue virus (DENV)-2 strains sampled from Malindi sub-County Hospital during the 2017 DENV-2 outbreak in the Kenyan coast. We further performed an extended East African phylogenetic analysis, which leveraged 26 complete African env genes. Our results indicated transmission of DENV-2 viruses between East Africa and South/South-West Asia, that there is localized spread of DENV-2 viruses within Kenya, and that Kenyan DENV-2 strains were circulating for up to 5.38 years in Kenya before detection in the 2017 Coastal outbreak. We further performed selection pressure analyses and identified possible new markers of DENV-2 immune recognition specific to this population, with relevance to vaccine design.


2019 ◽  
Vol 14 (2) ◽  
pp. 157-163
Author(s):  
Majid Hajibaba ◽  
Mohsen Sharifi ◽  
Saeid Gorgin

Background: One of the pivotal challenges in nowadays genomic research domain is the fast processing of voluminous data such as the ones engendered by high-throughput Next-Generation Sequencing technologies. On the other hand, BLAST (Basic Local Alignment Search Tool), a longestablished and renowned tool in Bioinformatics, has shown to be incredibly slow in this regard. Objective: To improve the performance of BLAST in the processing of voluminous data, we have applied a novel memory-aware technique to BLAST for faster parallel processing of voluminous data. Method: We have used a master-worker model for the processing of voluminous data alongside a memory-aware technique in which the master partitions the whole data in equal chunks, one chunk for each worker, and consequently each worker further splits and formats its allocated data chunk according to the size of its memory. Each worker searches every split data one-by-one through a list of queries. Results: We have chosen a list of queries with different lengths to run insensitive searches in a huge database called UniProtKB/TrEMBL. Our experiments show 20 percent improvement in performance when workers used our proposed memory-aware technique compared to when they were not memory aware. Comparatively, experiments show even higher performance improvement, approximately 50 percent, when we applied our memory-aware technique to mpiBLAST. Conclusion: We have shown that memory-awareness in formatting bulky database, when running BLAST, can improve performance significantly, while preventing unexpected crashes in low-memory environments. Even though distributed computing attempts to mitigate search time by partitioning and distributing database portions, our memory-aware technique alleviates negative effects of page-faults on performance.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Joon Moh Park ◽  
Jachoon Koo ◽  
Se Won Kang ◽  
Sung Hee Jo ◽  
Jeong Mee Park

Rhodococcus fascians is an important pathogen that infects various herbaceous perennials and reduces their economic value. In this study, we examined R. fascians isolates carrying a virulence gene from symptomatic lily plants grown in South Korea. Phylogenetic analysis using the nucleotide sequences of 16S rRNA, vicA, and fasD led to the classification of the isolates into four different strains of R. fascians. Inoculation of Nicotiana benthamiana with these isolates slowed root growth and resulted in symptoms of leafy gall. These findings elucidate the diversification of domestic pathogenic R. fascians and may lead to an accurate causal diagnosis to help reduce economic losses in the bulb market.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Boeckaerts ◽  
Michiel Stock ◽  
Bjorn Criel ◽  
Hans Gerstmans ◽  
Bernard De Baets ◽  
...  

AbstractNowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Ommer Mohammed Dafalla ◽  
Mohammed Alzahrani ◽  
Ahmed Sahli ◽  
Mohammed Abdulla Al Helal ◽  
Mohammad Mohammad Alhazmi ◽  
...  

Abstract Background Artemisinin-based combination therapy (ACT) is recommended at the initial phase for treatment of Plasmodium falciparum, to reduce morbidity and mortality in all countries where malaria is endemic. Polymorphism in portions of P. falciparum gene encoding kelch (K13)-propeller domains is associated with delayed parasite clearance after ACT. Of about 124 different non-synonymous mutations, 46 have been identified in Southeast Asia (SEA), 62 in sub-Saharan Africa (SSA) and 16 in both the regions. This is the first study designed to analyse the prevalence of polymorphism in the P. falciparum k13-propeller domain in the Jazan region of southwest Saudi Arabia, where malaria is endemic. Methods One-hundred and forty P. falciparum samples were collected from Jazan region of southwest Saudi Arabia at three different times: 20 samples in 2011, 40 samples in 2016 and 80 samples in 2020 after the implementation of ACT. Plasmodium falciparum kelch13 (k13) gene DNA was extracted, amplified, sequenced, and analysed using a basic local alignment search tool (BLAST). Results This study obtained 51 non-synonymous (NS) mutations in three time groups, divided as follows: 6 single nucleotide polymorphisms (SNPs) ‘11.8%’ in samples collected in 2011 only, 3 (5.9%) in 2011and 2016, 5 (9.8%) in 2011 and 2020, 5 (9.8%) in 2016 only, 8 (15.7%) in 2016 and 2020, 14 (27.5%) in 2020 and 10 (19.6%) in all the groups. The BLAST revealed that the 2011 isolates were genetically closer to African isolates (53.3%) than Asian ones (46.7%). Interestingly, this proportion changed completely in 2020, to become closer to Asian isolates (81.6%) than to African ones (18.4%). Conclusions Despite the diversity of the identified mutations in the k13-propeller gene, these data did not report widespread artemisinin-resistant polymorphisms in the Jazan region where these samples were collected. Such a process would be expected to increase frequencies of mutations associated with the resistance of ACT.


2015 ◽  
Vol 24 (4) ◽  
pp. 197-205
Author(s):  
Dwi Wulandari ◽  
Lisnawati Rachmadi ◽  
Tjahjani M. Sudiro

Background: E6 and E7 are oncoproteins of HPV16. Natural amino acid variation in HPV16 E6 can alter its carcinogenic potential. The aim of this study was to analyze phylogenetically E6 and E7 genes and proteins of HPV16 from Indonesia and predict the effects of single amino acid substitution on protein function. This analysis could be used to reduce time, effort, and research cost as initial screening in selection of protein or isolates to be tested in vitro or in vivo.Methods: In this study, E6 and E7 gene sequences were obtained from 12 samples of  Indonesian isolates, which  were compared with HPV16R (prototype) and 6 standard isolates in the category of European (E), Asian (As), Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and North American (NA) branch from Genbank. Bioedit v.7.0.0 was used to analyze the composition and substitution of single amino acids. Phylogenetic analysis of E6 and E7 genes and proteins was performed using Clustal X (1.81) and NJPLOT softwares. Effects of single amino acid substitutions on protein function of E6 and E7 were analysed by SNAP.Results: Java variants and isolate ui66* belonged to European branch, while the others belonged to Asian and African branches. Twelve changes of amino acids were found in E6 and one in E7 proteins. SNAP analysis showed two non neutral mutations, i.e. R10I and C63G in E6 proteins. R10I mutations were found in Af-2 genotype (AF472509) and Indonesian isolates (Af2*), while C63G mutation was found only in Af2*.Conclusion: E6 proteins of HPV16 variants were more variable than E7. SNAP analysis showed that only E6 protein of African-2 branch had functional differences compared to HPV16R.


2003 ◽  
Vol 10 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Angel Balmaseda ◽  
María G. Guzmán ◽  
Samantha Hammond ◽  
Guillermo Robleto ◽  
Carolina Flores ◽  
...  

ABSTRACT To evaluate alternative approaches to the serological diagnosis of dengue virus (DEN) infection, the detection of DEN-specific immunoglobulin M (IgM) and IgA antibodies in serum and saliva specimens was assessed in 147 patients with symptoms of DEN infection seen at the Ministry of Health in Nicaragua. Seventy-two serum samples were determined to be positive for anti-DEN antibodies by IgM capture enzyme-linked immunosorbent assay, the routine diagnostic procedure. Serum and saliva specimens were obtained from 50 healthy adults as additional controls. IgM was detected in the saliva of 65 of the 72 serum IgM-positive cases, 6 of the 75 serum IgM-negative cases, and none of the control group, resulting in a sensitivity of 90.3% and a specificity of 92.0% and demonstrating that salivary IgM is a useful diagnostic marker for DEN infection. Detection of IgA in serum may be another feasible alternative for the diagnosis of DEN infection, with serum IgA found in 68 (94.4%) of the IgM-positive cases. In contrast, detection of IgA in saliva was not found to be a useful tool for DEN diagnosis in the present study. Further studies of the kinetics of antibody detection in another set of 151 paired acute- and convalescent-phase serum samples showed that DEN-specific IgA antibodies were detected in more acute-phase samples than were IgM antibodies. Thus, we conclude that DEN-specific IgA in serum is a potential diagnostic target. Furthermore, given that saliva is a readily obtainable, noninvasive specimen, detection of DEN-specific salivary IgM should be considered a useful, cheaper diagnostic modality with similar sensitivity and specificity to IgM detection in serum.


Sign in / Sign up

Export Citation Format

Share Document