scholarly journals 3D printed rodent skin-skull-brain model: A novel animal-free approach for neurosurgical training

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253477
Author(s):  
Marie Bainier ◽  
Arel Su ◽  
Roger L. Redondo

In neuroscience, stereotactic brain surgery is a standard yet challenging technique for which laboratory and veterinary personnel must be sufficiently and properly trained. There is currently no animal-free training option for neurosurgeries; stereotactic techniques are learned and practiced on dead animals. Here we have used three-dimensional (3D) printing technologies to create rat and mouse skin-skull-brain models, specifically conceived for rodent stereotaxic surgery training. We used 3D models obtained from microCT pictures and printed them using materials that would provide the most accurate haptic feedback for each model—PC-ABS material for the rat and Durable resin for the mouse. We filled the skulls with Polyurethane expanding foam to mimic the brain. In order to simulate rodent skin, we added a rectangular 1mm thick clear silicone sheet on the skull. Ten qualified rodent neurosurgeons then performed a variety of stereotaxic surgeries on these rat and mouse 3D printed models. Participants evaluated models fidelity compared to cadaveric skulls and their appropriateness for educational use. The 3D printed rat and mouse skin-skull-brain models received an overwhelmingly positive response. They were perceived as very realistic, and considered an excellent alternative to cadaveric skulls for training purposes. They can be made rapidly and at low cost. Our real-size 3D printed replicas could enable cost- and time-efficient, animal-free neurosurgery training. They can be absolute replacements for stereotaxic surgery techniques practice including but not limited to craniotomies, screw placement, brain injections, implantations and cement applications. This project is a significant step forward in implementing the replacement, reduction, and refinement (3Rs) principles to animal experimentation. These 3D printed models could lead the way to the complete replacement of live animals for stereotaxic surgery training in laboratories and veterinary studies.

2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


2018 ◽  
Vol 127 (5) ◽  
pp. 338-343 ◽  
Author(s):  
Max Haffner ◽  
Austin Quinn ◽  
Tsung-yen Hsieh ◽  
E. Bradley Strong ◽  
Toby Steele

Objective: Identify the 3D printed material that most accurately recreates the visual, tactile, and kinesthetic properties of human temporal bone Subjects and Methods: Fifteen study participants with an average of 3.6 years of postgraduate training and 56.5 temporal bone (TB) procedures participated. Each participant performed a mastoidectomy on human cadaveric TB and five 3D printed TBs of different materials. After drilling each unique material, participants completed surveys to assess each model’s appearance and physical likeness on a Likert scale from 0 to 10 (0 = poorly representative, 10 = completely life-like). The 3D models were acquired by computed tomography (CT) imaging and segmented using 3D Slicer software. Results: Polyethylene terephthalate (PETG) had the highest average survey response for haptic feedback (HF) and appearance, scoring 8.3 (SD = 1.7) and 7.6 (SD = 1.5), respectively. The remaining plastics scored as follows for HF and appearance: polylactic acid (PLA) averaged 7.4 and 7.6, acrylonitrile butadiene styrene (ABS) 7.1 and 7.2, polycarbonate (PC) 7.4 and 3.9, and nylon 5.6 and 6.7. Conclusion: A PETG 3D printed temporal bone models performed the best for realistic appearance and HF as compared with PLA, ABS, PC, and nylon. The PLA and ABS were reliable alternatives that also performed well with both measures.


2021 ◽  
Vol 10 (6) ◽  
pp. 1201
Author(s):  
Maciej Błaszczyk ◽  
Redwan Jabbar ◽  
Bartosz Szmyd ◽  
Maciej Radek

We developed a practical and cost-effective method of production of a 3D-printed model of the arterial Circle of Willis of patients treated because of an intracranial aneurysm. We present and explain the steps necessary to produce a 3D model from medical image data, and express the significant value such models have in patient-specific pre-operative planning as well as education. A Digital Imaging and Communications in Medicine (DICOM) viewer is used to create 3D visualization from a patient’s Computed Tomography Angiography (CTA) images. After generating the reconstruction, we manually remove the anatomical components that we wish to exclude from the print by utilizing tools provided with the imaging software. We then export this 3D reconstructions file into a Standard Triangulation Language (STL) file which is then run through a “Slicer” software to generate a G-code file for the printer. After the print is complete, the supports created during the printing process are removed manually. The 3D-printed models we created were of good accuracy and scale. The median production time used for the models described in this manuscript was 4.4 h (range: 3.9–4.5 h). Models were evaluated by neurosurgical teams at local hospital for quality and practicality for use in urgent and non-urgent care. We hope we have provided readers adequate insight into the equipment and software they would require to quickly produce their own accurate and cost-effective 3D models from CT angiography images. It has become quite clear to us that the cost-benefit ratio in the production of such a simplified model is worthwhile.


2019 ◽  
Author(s):  
Noha Hamada Mohamed ◽  
Hossam Kandil ◽  
Iman Ismail Dakhli

Abstract In dentistry, 3D printing already has diverse applicability, and holds a great deal of promise to make possible many new and exciting treatments and approaches to manufacturing dental restorations. Better availability, shorter processing time, and descending costs have resulted in the increased use of RP. Concomitantly the development of medical applications is expanding. (Zaharia et al., 2017)Many different printing technologies exist, each with their own advantages and disadvantages. Unfortunately, a common feature of the more functional and productive equipment is the high cost of the equipment, the materials, maintenance, and repair, often accompanied by a need for messy cleaning, difficult post-processing, and sometimes onerous health and safety concerns (Dawood et al., 2015)Low-cost 3D printers represent a great opportunity in the dental and medical field, as they could allow surgeons to use 3D models at a very low cost and, therefore, democratize the use of these 3D models in various indications. However, efforts should be made to establish a unified validation protocol for low-cost RP 3D printed models, including accuracy, reproducibility, and repeatability tests. Asaumi et al., suggested that dimensional changes may not affect the success of surgical applications if such changes are within a 2% variation .However, the proposed cut-off of 2% should be furthermore discussed, as the same accuracy may be not required for all types of indications. (Silva et al., 2008; Maschio et al., 2016)This aim of the present study is to evaluate the dimensional accuracy of the 3D printed mandibular models fabricated by two different additive manufacturing techniques, using highly precise one as selective laser sintering (SLS) and a low-cost one as fused filament fabrication and whether they are both comparable in terms of precision. In addition to evaluation of dimensional accuracy of linear measurements of the mandible in CBCT scans.7 mandibular models will be recruited. Radio-opaque markers of gutta-percha balls will be applied on the model to act as guide pointsTen linear measurements (5 long distances: Inter-condylar, inter-coronoidal, inter-mandibular notch, length of left ramus, length of right ramus; as well as 5 short distances: Length of the body of the mandible at midline, length of the body of the mandible in the area of last left molar, as well as that of the last right molar, the distance between the tip of right condyle to the tip of the right coronoid, as well as that of their left counterparts) will be obtained using digital calliper, to act as the reference standard later. Scanning of the model by CBCT will be next , 3D printing of the scanned image using SLS and FFF printers will be done. Recording of same linear measurment will be done on printed models. Comparison of the recorded values vs reference standard is the last step


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taseef Hasan Farook ◽  
Nafij Bin Jamayet ◽  
Jawaad Ahmed Asif ◽  
Abdul Sattar Din ◽  
Muhammad Nasiruddin Mahyuddin ◽  
...  

AbstractPalatal defects are rehabilitated by fabricating maxillofacial prostheses called obturators. The treatment incorporates taking deviously unpredictable impressions to facsimile the palatal defects into plaster casts for obturator fabrication in the dental laboratory. The casts are then digitally stored using expensive hardware to prevent physical damage or data loss and, when required, future obturators are digitally designed, and 3D printed. Our objective was to construct and validate an economic in-house smartphone-integrated stereophotogrammetry (SPINS) 3D scanner and to evaluate its accuracy in designing prosthetics using open source/free (OS/F) digital pipeline. Palatal defect models were scanned using SPINS and its accuracy was compared against the standard laser scanner for virtual area and volumetric parameters. SPINS derived 3D models were then used to design obturators by using (OS/F) software. The resultant obturators were virtually compared against standard medical software designs. There were no significant differences in any of the virtual parameters when evaluating the accuracy of both SPINS, as well as OS/F derived obturators. However, limitations in the design process resulted in minimal dissimilarities. With further improvements, SPINS based prosthetic rehabilitation could create a viable, low cost method for rural and developing health services to embrace maxillofacial record keeping and digitised prosthetic rehabilitation.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Stefan Krumpen ◽  
Reinhard Klein ◽  
Michael Weinmann

VR/AR technology is a key enabler for new ways of immersively experiencing cultural heritage artifacts based on their virtual counterparts obtained from a digitization process. In this article, we focus on enriching VR-based object inspection by additional haptic feedback, thereby creating tangible cultural heritage experiences. For this purpose, we present an approach for interactive and collaborative VR-based object inspection and annotation. Our system supports high-quality 3D models with accurate reflectance characteristics while additionally providing haptic feedback regarding shape features of the object based on a 3D printed replica. The digital object model in terms of a printable representation of the geometry as well as reflectance characteristics are stored in a compact and streamable representation on a central server, which streams the data to remotely connected users/clients. The latter can jointly perform an interactive inspection of the object in VR with additional haptic feedback through the 3D printed replica. Evaluations regarding system performance, visual quality of the considered models, as well as insights from a user study indicate an improved interaction, assessment, and experience of the considered objects.


BMJ Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. e034900
Author(s):  
Qing-Yun Li ◽  
Qi Zhang ◽  
Chun Yan ◽  
Ye He ◽  
Mukuze Phillip ◽  
...  

ObjectiveTo evaluate the feasibility of a phone camera and cloud service-based workflow to image bone specimens and print their three-dimensional (3D) models for anatomical education.DesignThe images of four typical human bone specimens, photographed by a phone camera, were aligned and converted into digital images for incorporation into a digital model through the Get3D website and submitted to an online 3D printing platform to obtain the 3D printed models. The fidelity of the 3D digital, printed models relative to the original specimens, was evaluated through anatomical annotations and 3D scanning.SettingThe Morphologic Science Experimental Center, Central South University, China.ParticipantsSpecimens of four typical bones—the femur, rib, cervical vertebra and skull—were used to evaluate the feasibility of the workflow.Outcome measuresThe gross fidelity of anatomical features within the digital models and 3D printed models was evaluated first using anatomical annotations in reference to Netter’s Atlas of Human Anatomy. The measurements of the deviation were quantised and visualised for analysis in Geomagic Control 2015.ResultsAll the specimens were reconstructed in 3D and printed using this workflow. The overall morphology of the digital and 3D printed models displayed a large extent of similarity to the corresponding specimens from a gross anatomical perspective. A high degree of similarity was also noticed in the quantitative analysis, with distance deviations ≤2 mm present among 99% of the random sampling points that were tested.ConclusionThe photogrammetric digitisation workflow adapted in the present study demonstrates fairly high precision with relatively low cost and fewer equipment requirements. This workflow is expected to be used in morphological/anatomical science education, particularly in institutions and schools with limited funds or in certain field research projects involving the fast acquisition of 3D digital data on human/animal bone specimens or on other remains.


Author(s):  
Evan Williams ◽  
Steven Long ◽  
Marcus Tatum ◽  
Donald D. Anderson ◽  
Geb Thomas

Abstract Medical simulation has risen in popularity as a method of improving surgical outcomes for less experienced practitioners. In orthopedic surgery, haptic feedback is an essential element of simulation. In the case of Kirschner wire navigation, for example, a steel pin is drilled through cortical bone and into cancellous bone. Currently, many orthopedic simulations use Sawbones polyurethane foam surrogates as a bone simulant (Sawbones, Vashon Island, WA). When designing a simulator, however, creating or modifying an existing mold for cast parts is costly, which can be a critical limitation. A relatively low-cost alternative is 3D printing prototype bone surrogates. In this experiment, three rapid-prototyped bone samples were printed from light-weight polylactic acid, each with different material densities based on their printing temperature. In a blind test, orthopedic surgeons were asked to drill a Kirschner wire into four bone simulants: three made from polylactic acid, each prepared with different printing temperatures, and a Sawbones control. The surgeons rated their experience with the surface engagement, drill feel, and ability to redirect their wire. The survey found that the densest sample, printed at the lowest temperature, received the highest surgeon rating, with an average score of 13.5/15 ± 2.60; the Sawbones control received the worst rating: 6.5/15 ± 2.96.


2019 ◽  
Vol 25 (2) ◽  
pp. 363-377 ◽  
Author(s):  
Asier Muguruza Blanco ◽  
Lucas Krauel ◽  
Felip Fenollosa Artés

Purpose The use of physical 3D models has been used in the industry for a while, fulfilling the function of prototypes in the majority of cases where the designers, engineers and manufacturers optimize their designs before taking them into production. In recent years, there has been an increasing number of reports on the use of 3D models in medicine for preoperative planning. In some highly complex surgeries, the possibility of using printed models to previously perform operations can be determining in the success of the surgery. With the aim of providing new functionalities to an anatomical 3D-printed models, in this paper, a cost-effective manufacturing process has been developed. A set of tradition of traditional techniques have been combined with 3D printing to provide a maximum geometrical freedom to the process. By the use of an electroluminescent set of functional paints, the tumours and vessels of the anatomical printed model have been highlighted, providing to this models the possibility to increase its interaction with the surgeon. These set of techniques has been used to increase the value added to the reproduced element and reducing the costs of the printed model, thus making it more accessible. Design/methodology/approach Successfully case in where the use of a low-cost 3D-printed anatomical model was used as a tool for preoperative planning for a complex oncological surgery. The said model of a 70-year-old female patient with hepatic metastases was functionalized with the aim of increasing the interaction with the surgeons. The analysis of the construction process of the anatomical model based on the 3D printing as a tool for their use in the medical field has been made, as well as its cost. Findings The use of 3D printing in the construction of anatomical models as preoperative tools is relatively new; however, the functionalization of these tools by using conductive and electroluminescent materials with the aim of increasing the interaction with it by the surgeons is a novelty. And, based on the DIY principles, it offers a geographical limitlessness, reducing its cost without losing the added value. Originality/value The process based on 3D printing presented in this paper allows to reproduce low-cost anatomical models by following a simple sequence of steps. It can be done by people with low qualification anywhere with only access to the internet and with the local costs. The interaction of these models with the surgeon based on touch and sight is much higher, adding a very significant value it, without increasing its cost.


2018 ◽  
Author(s):  
M. Cognolato ◽  
M. Atzori ◽  
C. Marchesin ◽  
S. Marangon ◽  
D. Faccio ◽  
...  

AbstractUpper limb amputations are highly impairing injuries that can substantially limit the quality of life of a person. The most advanced dexterous prosthetic hands have remarkable mechanical features. However, in most cases, the control systems are a simple extension of basic control protocols, making the use of the prosthesis not intuitive and sometimes complex. Furthermore, the cost of dexterous prosthetic hands is often prohibitive, especially for the pediatric population and developing countries. 3D printed hand prostheses can represent an opportunity for the future. Open 3D models are increasingly being released, even for dexterous prostheses that are capable of moving each finger individually and actively rotating the thumb. However, the usage and test of such devices by hand amputees (using electromyography and classification methods) is not well explored. The aim of this article is to investigate the usage of a cost-effective system composed of a 3D printed hand prosthesis and a low-cost myoelectric armband. Two subjects with transradial amputation were asked to wear a custom-made socket supporting the HANDi Hand and the Thalmic Labs Myo armband. Afterwards, the subjects were asked to control and use the prosthetic hand to grasp several objects by attempting to perform a set of different hand gestures. Both the HANDi Hand and the Myo armband performed well during the test, which is encouraging considering that the HANDi Hand was developed as a research platform. The results are promising and show the feasibility of the multifunction control of dexterous 3D printed hand prostheses based on low-cost setups. Factors as the level of the amputation, neuromuscular fatigue and mechanical limitations of the 3D printed hand prosthesis can influence the performance of the setup. Practical aspects such as usability and robustness will need to be addressed for successful application in daily life. A video of the tests can be found at the following link:https://youtu.be/iPSCAbd17Qw


Sign in / Sign up

Export Citation Format

Share Document