scholarly journals Low-Cost Multimodal Physiological Telemonitoring System through Internet of Things

2021 ◽  
Vol 21 (1) ◽  
pp. 55
Author(s):  
Kadek Heri Sanjaya ◽  
Asep Nugroho ◽  
Latif Rozaqie ◽  
Yukhi Mustaqim Kusuma Sya'Bana ◽  
Rizqi Andry Ardiansyah ◽  
...  

The objective of this study is to develop and test a patient telemonitoring system. This study was encouraged by the high number of health workers fatalities in Indonesia due to physical contact without proper protection. Based on the symptoms of COVID-19 it consists of electrocardiogram (ECG) sensors, body temperature sensors, respiratory rate sensors, and pulse oximeter. The physiological data were captured by the sensors and collected by a microcontroller then it sends the data to a cloud system so that health workers can access the data. The experiments were performed to test both the offline and online protocol to compare data sent via a direct connection and data sent via Wi-Fi. In the offline testing, there were several limitations observed such as the low sampling frequency of the ECG signals that reduce the fidelity of the signals. Such problems were also observed on respiratory rate data. Furthermore, the system is also very prone to subjects’ movement-related noise. The measurements of peripheral oxygen saturation (SpO2) and body temperature, on the other hand, have been detected the slight change up to 0.1% and 0.5oC respectively. In the online testing, the data transmission to the cloud is sent per 30 seconds so that morphologically the ECG signal data are not representative. The system requires a lot of improvements and future study should be directed to improve signals acquisition and processing while maintaining the concept of low-cost. Design improvement should also include a better attachment design to the human body as well as greater data transmission for the online system.

Author(s):  
Lohitha Mallireddy

Since the corona outbreak, it has become very difficult to identify those who are affected by the virus or not. It can impact a lot of students if proper preventions not taken. To solve this issue, temperature devices are often used to measure body temperature. These devices have non-contact IR temperature sensors which can measure the body temperature without any physical contact and will update the security department. If the temperature of the person exceeds the threshold temperature and entry will be restricted in the campus by a barricade prototype followed up by facial recognition. Using temperature sensor (MLX90614) temperature of the person is recorded. If the temperature doesn’t exceed the threshold temperature the person can enter the campus. If the temperature of the person exceeds the threshold temperature an alert will be triggered and the sensor will capture the image of the person and match with the database of campus and the information is sent to security department and information regarding temperature violation. The information will be consisting of picture taken during checking of temperature, name, USN, department. We propose a low-cost internet of things (IoT)-enabled COVID-19 standard operating procedure (SOP) compliance system that counts the number of people entering and leaving vicinity, ensures physical distancing, monitors body temperature and warns attendees and managers of violations. The system comprises of multiple sensor nodes communicating with a centralized server. The data stored on the server can be used for compliance auditing, real-time monitoring, and planning purposes. The system does not record the personal information of students nor provide contact tracing information.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Ying Jin ◽  
Guoning Chen ◽  
Kete Lao ◽  
Songhui Li ◽  
Yong Lu ◽  
...  

Abstract Flexible sensors are required to be lightweight, compatible with the skin, sufficiently sensitive, and easily integrated to extract various kinds of body vital signs during continuous healthcare monitoring in daily life. For this, a simple and low-cost flexible temperature and force sensor that uses only two carbon fiber beams as the sensing layer is reported in this work. This simple, flexible sensor can not only monitor skin temperature changes in real time but can also extract most pulse waves, including venous waves, from most parts of the human body. A pulse diagnostic glove containing three such flexible sensors was designed to simulate pulse diagnostic methods used in traditional Chinese medicine. Wearable equipment was also designed in which four flexible sensors were fixed onto different body parts (neck, chest, armpit, and fingertip) to simultaneously monitor body temperature, carotid pulse, fingertip artery pulse, and respiratory rate. Four important physiological indicators—body temperature (BT), blood pressure (BP), heart rate (HR), and respiratory rate (RR)—were extracted by the wearable equipment and analyzed to identify exercise, excited, tired, angry, and frightened body states.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-An Chiou ◽  
Jhen-Yang Syu ◽  
Sz-Ying Wu ◽  
Lian-Yu Lin ◽  
Li Tzu Yi ◽  
...  

AbstractElectrocardiogram (ECG)-based intelligent screening for systolic heart failure (HF) is an emerging method that could become a low-cost and rapid screening tool for early diagnosis of the disease before the comprehensive echocardiographic procedure. We collected 12-lead ECG signals from 900 systolic HF patients (ejection fraction, EF < 50%) and 900 individuals with normal EF in the absence of HF symptoms. The 12-lead ECG signals were converted by continuous wavelet transform (CWT) to 2D spectra and classified using a 2D convolutional neural network (CNN). The 2D CWT spectra of 12-lead ECG signals were trained separately in 12 identical 2D-CNN models. The 12-lead classification results of the 2D-CNN model revealed that Lead V6 had the highest accuracy (0.93), sensitivity (0.97), specificity (0.89), and f1 scores (0.94) in the testing dataset. We designed four comprehensive scoring methods to integrate the 12-lead classification results into a key diagnostic index. The highest quality result among these four methods was obtained when Leads V5 and V6 of the 12-lead ECG signals were combined. Our new 12-lead ECG signal–based intelligent screening method using straightforward combination of ECG leads provides a fast and accurate approach for pre-screening for systolic HF.


2012 ◽  
Vol 459 ◽  
pp. 544-548 ◽  
Author(s):  
Wei Liang ◽  
Jian Bo Xu ◽  
Wei Hong Huang ◽  
Li Peng

Network security technology ensures secure data transmission in network. Meanwhile, it brings extra overhead of security system in terms of cost and performance, which seriously affects the rapid development of existing high-speed encryption systems. The existing encryption technology cannot meet the demand of high security, low cost and high real-time. For solving above problems, an ECC encryption engine architecture based on scalable public key cipher and a high-speed configurable multiplication algorithm are designed. The algorithm was tested on FPGA platform and the experiment results show that the system has better computation speed and lower cost overhead. By comparing with other systems, our system has benefits in terms of hardware overhead and encryption time ratio


2021 ◽  
Vol 8 ◽  
Author(s):  
Emma Thornton ◽  
Eve Robinson ◽  
James R. Templeman ◽  
Lindy Bruggink ◽  
Michael Bower ◽  
...  

Dietary fiber affects canine physiology in many ways, such as increasing colonic absorption of water and improving gut health, both of which may positively impact exercise performance. The objectives of this study were to investigate the effects of increased dietary soluble fiber and incremental training on respiratory rate (RR), internal body temperature (BT), body composition, and fecal metabolites in mid-distance training sled dogs. Fourteen dogs (12 Siberian and 2 Alaskan Huskies) were blocked by age, sex, and body weight (BW) and then randomly allocated into one of two diet groups. Seven dogs were fed a dry extruded control diet (Ctl) with an insoluble:soluble fiber ratio of 4:1 (0.74% soluble fiber on a dry-matter basis), and seven dogs were fed a dry extruded treatment diet (Trt) with an insoluble:soluble fiber ratio of 3:1 (2.12% soluble fiber on a dry-matter basis). Fecal samples were taken once a week. All dogs underwent 9 weeks of incremental exercise conditioning where the running distance was designed to increase each week. Every 3 weeks, external telemetry equipment was used to non-invasively measure and record RR and internal BT at resting, working, and post-exercise recovery states. Body composition was measured on weeks −1 and 9 using quantitative magnetic resonance. Body composition, RR, BT, and fecal metabolites were analyzed using a mixed model with dog as a random effect and week and diet group as fixed effects. Dogs on Trt had lower working and post-exercise BT than Ctl (P &lt; 0.05). In addition, Trt dogs had lower recovery BT at weeks 2 and 5 than Ctl dogs (P &lt; 0.05). Treatment dogs had greater fecal short-chain fatty acid concentrations than Ctl (P &lt; 0.05). Diet had no effect on RR or body composition (P &gt; 0.10), but exercise resulted in an overall 7% increase in lean and 3.5% decrease in fat mass (P &lt; 0.05). These data suggest that increasing dietary soluble fiber may positively influence BT and gut health; however, it has no effect on RR or body composition. Soluble fiber did not negatively impact any measures of overall health and performance and should be considered for use in performance dogs.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Wang ◽  
Yuanyuan Cai ◽  
Junsong Fu ◽  
Jie Xu

The rapid development of Internet of Medical Things (IoMT) is remarkable. However, IoMT faces many problems including privacy disclosure, long delay of service orders, low retrieval efficiency of medical data, and high energy cost of fog computing. For these, this paper proposes a data privacy protection and efficient retrieval scheme for IoMT based on low-cost fog computing. First, a fog computing system is located between a cloud server and medical workers, for processing data retrieval requests of medical workers and orders for controlling medical devices. Simultaneously, it preprocesses physiological data of patients uploaded by IoMT, collates them into various data sets, and transmits them to medical institutions in this way. It makes the entire execution process of low latency and efficient. Second, multidimensional physiological data are of great value, and we use ciphertext retrieval to protect privacy of patient data in this paper. In addition, this paper uses range tree to build an index for storing physiological data vectors, and meanwhile a range retrieval method is also proposed to improve data search efficiency. Finally, bat algorithm (BA) is designed to allocate cost on a fog server group for significant energy cost reduction. Extensive experiments are conducted to demonstrate the efficiency of the proposed scheme.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 598
Author(s):  
Gerard Ulibarri ◽  
Angel Betanzos ◽  
Mireya Betanzos ◽  
Juan Jacobo Rojas

Objective: To study the effectiveness of an integrated intervention of health worker training, a low-cost ecological mosquito ovitrap, and community engagement on Aedes spp. mosquito control over 10 months in 2015 in an urban remote community in Guatemala at risk of dengue, chikungunya and Zika virus transmission. Methods: We implemented a three-component integrated intervention consisting of: web-based training of local health personnel in vector control, cluster-randomized assignment of ecological ovillantas or standard ovitraps to capture Aedes aegypti mosquito eggs, and community engagement to promote participation of community members and health personnel in the understanding and maintenance of ovitraps for mosquito control. The intervention was implemented in local collaboration with the Ministry of Health’s Vector Control Programme, and in international collaboration with the National Institute of Public Health in Mexico. Findings: Eighty percent of the 25 local health personnel enrolled in the training programme received accreditation of their improved knowledge of vector control. Significantly more eggs were trapped by  ecological ovillantas than standard ovitraps over the 10 month (42 week) study period (t=5.2577; p<0.05). Among both community members and health workers, the levels of knowledge, interest, and participation in community mosquito control and trapping increased. Recommendations for enhancing and sustaining community mosquito control were identified. Conclusion: Our three-component integrated intervention proved beneficial to this remote community at risk of mosquito-borne diseases such as dengue, chikungunya, and Zika. The combination of training of health workers, low-cost ecological ovillanta to destroy the second generation of mosquitoes, and community engagement ensured the project met local needs and fostered collaboration and participation of the community, which can help improve sustainability. The ovillanta intervention and methodology may be modified to target other species such as Culex, should it be established that such mosquitoes carry Zika virus in addition to Aedes.


Author(s):  
Y. A. Svetlichniy ◽  

The article deals with the practical aspects of synchronization and data transferring in multichannel phased array systems, especially in systems with big antenna dimensions. In multichannel passed array antenna commonly used an optical analog signals distribution scheme for RF and heterodyne signals and wired interfaces for control and digital data. For modern digital antennas the data transferring and synchronization method, based on digital fiber optic channels, was presented. The schemes, constructions, and algorithms of the method are described. The method was realized as SDR system using FPGA with soft-processor core. For data transferring the 8b/10b code is used. The following result of experiment are discussed: digital optical lines are resistant to signals distortions, can transfer big data massive with minimal delay, have excellent synchronization capabilities at quite low cost.


Sign in / Sign up

Export Citation Format

Share Document