scholarly journals THE ROLE OF N-DOPING TO THE PORE CHARACTERISTICS OF ACTIVATED CARBON FROM VETIVER ROOT DISTILLATION WASTE

Metalurgi ◽  
2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Yohana Fransiska Ferawati ◽  
Ratna Frida Susanti

This work studied the effect of nitrogen functional group modification on activated carbon synthesized from vetiver root waste on pores development. Synthesis of activated carbon was carried out by hydrothermal carbonization of vetiver root waste at a temperature of 225 ⁰C for 18 hours followed by chemical activation using K2FeO4as activated agent in a furnace at temperature of 800 ⁰C for 2 hours with nitrogen atmosphere flowed at a rate of 100 mL/minute. Urea was used as a nitrogen source. The variation of urea concentration was 1:0 (AC0–800), 1:3 (AC3–800) and 1:5 (AC5–800). The results showed that these activated carbons have mesoporous characteristics with the largest Brunauer Emmett Teller (SBET) surface area of 552.90 m2g-1 and average pore width 3,43 nm. The presence of nitrogen functional group was observed in the Fourier Transform Infrared Spectrometer analysis. Synthesis of activated carbon from vetiver root waste with an addition of urea is the newest method to produce mesoporous activated carbon for electrode and  support catalyst purposes.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3534
Author(s):  
J. A. Villamil ◽  
E. Diaz ◽  
M. A. de la Rubia ◽  
A. F. Mohedano

In this work, dewatered waste activated sludge (DWAS) was subjected to hydrothermal carbonization to obtain hydrochars that can be used as renewable solid fuels or activated carbon precursors. A central composite rotatable design was used to analyze the effect of temperature (140–220 °C) and reaction time (0.5–4 h) on the physicochemical properties of the products. The hydrochars exhibited increased heating values (up to 22.3 MJ/kg) and their air-activation provided carbons with a low BET area (100 m2/g). By contrast, chemical activation with K2CO3, KOH, FeCl3 and ZnCl2 gave carbons with a well-developed porous network (BET areas of 410–1030 m2/g) and substantial contents in mesopores (0.079–0.271 cm3/g) and micropores (0.136–0.398 cm3/g). The chemically activated carbons had a fairly good potential to adsorb emerging pollutants such as sulfamethoxazole, antipyrine and desipramine from the liquid phase. This was especially the case with KOH-activated hydrochars, which exhibited a maximum adsorption capacity of 412, 198 and 146 mg/g, respectively, for the previous pollutants.


2015 ◽  
Vol 781 ◽  
pp. 659-662 ◽  
Author(s):  
Thanchanok Pagketanang ◽  
Prasong Wongwicha ◽  
Mallika Thabuot

Rubber-seed shell was selected as the precursor for the preparation of activated carbon by chemical activation with KOH as an activating agent. Impregnation-Activation Method and Carbonization-Impregnation-Activation Method were investigated with different concentration of KOH solution. Rubber-seed shell activated carbons were characterized by using scanning electron microscope, fourier transform infared spectroscopy and nitrogen adsorption isotherms. The results present that the first method which impregnation of precursor in 2%wt. KOH solution with the ratio of 300 g/l for 24 hrs before thermal activation at 700°C for 2 hrs under 2 cm3/min of nitrogen flow, was satisfied to prepare the Rubber-seed shell activated carbon. Products with maximum BET surface area, average pore diameter and volume ratio of micropores to mesopores were equal to 429 m2/g, 2.09 nm and 4.19, respectively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6462
Author(s):  
Isaac Lorero ◽  
Arturo J. Vizcaíno ◽  
Francisco J. Alguacil ◽  
Félix A. López

An activated carbon manufacturing process from winemaking waste is analyzed. In that way, vine shoots conversion is studied as a basis for plant designing, and mass and energy balances of hydrothermal carbonization and physical activation are fulfilled. To develop an energy-integrated plant, a network of heat exchangers is allocated to recover heat waste, and a cogeneration cycle is designed to provide electricity and remaining heat process demands. Furthermore, thermoeconomic analysis is applied to determine the thermodynamic efficiency and the economic viability of the plant. Energy balance indicates that heat exchangers energy integration covers 48.9% of the overall demands by crossing hot and cold streams and recovering heat from residual flue gas. On the other hand, the exergy costs analysis identifies combustion of pruning wood as the main source of exergy destruction, confirming the suitability of the integration to improve the thermodynamic performance. Attending to economic costs analysis, production scale and vineyard pruning wood price are identified as a critical parameter on process profitability. With a scale of 2.5 ton/h of pruning wood carbonization, a break-event point to compete with activated carbons from biomass origin is reached. Nevertheless, cost of pruning wood is identified as another important economic parameter, pointing out the suitability of wet methods such as hydrothermal carbonization (HTC) to treat them as received form the harvest and to contribute to cutting down its prices.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102680-102694 ◽  
Author(s):  
Z. Z. Chowdhury ◽  
S. B. Abd Hamid ◽  
Md. M. Rahman ◽  
R. F. Rafique

Activated carbon was produced by physico-chemical activation of hydrothermally carbonized dried stem derived from Corchorus olitorius, commonly known as Jute (JS), using potassium hydroxide (KOH) as an activation agent.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Geni Juma ◽  
Revocatus Machunda ◽  
Tatiana Pogrebnaya

In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature (Tc), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, Tc=800°C, and FR=0.02 m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.


Sign in / Sign up

Export Citation Format

Share Document