scholarly journals Thermoelectric Power of Silver Telluride Thin Films and its Thermal Conductivity Applications

2021 ◽  
Vol 33 (11) ◽  
pp. 2615-2620
Author(s):  
M. Prem Nawaz ◽  
M. Palanivelu ◽  
M. Karunanithy ◽  
A. Afroos Banu ◽  
A. Ayeshamariam ◽  
...  

The hydrothermal technique was used to create straight single crystal silver telluride nanowires with a diameter of around 200 nm and a length of up to micrometers of decades. There has been no template or surfactant used in the process. As-synthesized products are high purity and well-crystallized, confirmed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectrum, transmission electron microscopy (TEM), and a high-resolution SAED pattern. Differential scanning calorimetry was used to observe the reversible structural phase shift from the low-temperature monoclinic structure to the high-temperature face-centered cubic structure. Furthermore, the dramatic drop in electrical current in a single nanowire at the phase transition temperature is revealed, paving the way for future research into the manufacturing of one-dimensional nanoscale devices. Silver telluride (Ag2Te) has large thermoelectric coefficients and it was tested by using resistor graph and calculated the values of it, thermal conductivity and Seebeck coefficient were discussed with respect to the temperature of thin films. Semiconductors were superior thermoelectric material due to higher ratio of electrical and thermal conductivities. Therefore, the AgTe thin films deposited on indium tin oxide (ITO) substrates were employed, thermoelectric power and thermal conductivity measurements, respectively.

Author(s):  
Jin Fang ◽  
Laurent Pilon ◽  
Chris B. Kang ◽  
Sarah H. Tolbert

This paper reports the cross-plane thermal conductivity of ordered polycrystalline mesoporous silicon thin films between 30 and 320 K. The films were produced by a combination of evaporation induced self-assembly (EISA) of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon was characterized by a combination of 1D X-ray diffraction, 2D small angle X-ray scattering, and direct SEM imaging. The average crystallite size, porosity, and film thickness were about 13–18 nm, 25–35%, and 140–260 nm, respectively. The pores were arranged in a face-centered cubic lattice. Finally, the cross-plane thermal conductivity of the meso-porous silicon thin films was measured using the 3ω method. The measured thermal conductivity was about 3 to 5 orders of magnitude smaller than that of the bulk dense crystalline silicon for the temperature range considered. The effects of temperature and film thickness on the thermal conductivity were investigated.


2009 ◽  
Vol 24 (11) ◽  
pp. 3321-3330 ◽  
Author(s):  
Y.F. Han ◽  
T. Fu ◽  
Y.G. Shen

The effects of Al incorporation and post-deposition annealing on the structural properties of C-Al-N thin films prepared by reactive unbalanced dc-magnetron sputtering were investigated using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). XPS studies demonstrated the presence of abundant Al-N bonds in addition to C-C and N-C bonds. At low incorporations of Al and N, the films were found to be essentially amorphous. By Raman and HRTEM, the formation of ∼5 nm fullerene-like carbon nitride (FL-CNx) nanostructures in an amorphous (C, CNx) matrix was evidenced with increasing Al content in the films. Crystalline improvement of FL-CNx nanostructures was seen, as well as the precipitation of ∼3–4 nm face centered cubic (fcc-) AlN nanograins by thermal annealing at 500 °C or above. Through these improvements, C-Al-N nanocomposite thin films were achieved. The effects of the incorporated Al and annealing on stabilizing fcc-AlN nanograins and FL-CNx nanostructures are elucidated and explained through the use of thermodynamic considerations.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2018 ◽  
Vol 17 (03) ◽  
pp. 1760039
Author(s):  
K. M. Dhanisha ◽  
M. Manoj Christopher ◽  
M. Abinaya ◽  
P. Deepak Raj ◽  
M. Sridharan

The present work deals with NiO/Si3N4 layers formed by depositing nickel oxide (NiO) thin films over silicon nitrate (Si3N[Formula: see text] thin films. NiO films were coated on Si3N4-coated Si substrate using magnetron sputtering method by changing duration of coating time and were analyzed using X-ray diffractometer, field emission-scanning electron microscopy, UV–Vis spectrophotometer and four-point probe method to study the influence of thickness on physical properties. Crystallinity of the deposited films increases with increase in thickness. All films exhibited spherical-like structure, and with increase in deposition time, grains are coalesced to form smooth surface morphology. The optical bandgap of NiO films was found to decrease from 3.31[Formula: see text]eV to 3.22[Formula: see text]eV with upsurge in the thickness. The film deposited for 30[Formula: see text]min exhibits temperature coefficient resistance of [Formula: see text]1.77%/[Formula: see text]C as measured at 80[Formula: see text]C.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


Sign in / Sign up

Export Citation Format

Share Document