scholarly journals Turmeric Oil Mediated Green Synthesis of Silver Nanoparticles and their Antioxidant Activity

2021 ◽  
Vol 10 (8) ◽  
pp. 558-561
Author(s):  
Varusha Sharon Christopher ◽  
Anitha Roy ◽  
Shanmugam Rajeshkumar

The number of medical applications of silver nanoparticles is constantly increasing due to their high bactericidal properties coupled with low toxicity towards living cells. Because of this expanding use of silver nanoparticles, novel methods of synthesis have been developed in order to achieve nanoparticles preparation through inexpensive and environmentally friendly process.1 Biogenic synthesis of silver nanoparticles is an approach that meets those requirements. Nanoparticles are an intermediate between bulk materials and individual atoms with unique properties. Nanoparticles have been employed in various fields such as catalysis, ceramics, drug delivery and diagnostics and therapies of oncology.2 Several studies have described the controlled synthesis of metal nanoparticles of different sizes and shapes mediated by bio molecules, which is nontoxic and minimises environment damage. Antioxidants have been widely used as additive to provide protection against oxidative degradation of foods.3 Although many synthetic chemicals, such as phenolic compounds are found to be strong radical scavengers, they usually have serious side effects.4 In view of this, antioxidant substances obtained from natural sources will be great interest. Turmeric is extensively used as spice, as a colouring agent for textiles, pharmaceuticals, confectionary and cosmetics.5 In Indian system of medicine, turmeric is used in stomach-ache, as a blood purifier, carminative, appetiser and tonic.5,6 Turmeric is also used in drugs against cancer, dermatitis, AIDS (Acquired Immuno-Deficiency Syndrome) and high cholesterol level.7 During the course of this study, we have synthesized silver nanoparticles using turmeric oil and characterised them using UV-vis spectroscopic analysis and checked for their antioxidant activity

2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
T. V. Zvyagintseva ◽  
S. I. Myronchenko ◽  
N. I. Kytsyuk ◽  
O. V. Naumova

Considering the particular danger of remote skin reactions to ultraviolet irradiation (UVI), it is advisable to use ointments with antioxidant activity to reduce its negative effect on the skin. The rationale for the choice of ointments with antioxidant activity was the fact that they reduce the damaging effect of ultraviolet radiation in the erythemal and early post-erythemal period. The presence of a regular connection between the development of the early and late periods has given reason to assume the protective effect of ointments on the remote skin reactions. Objective: to study the effect of thiotriazoline ointment and thiotriazoline ointment with silver nanoparticles on the state of the morphological structures of the skin of guinea pigs after local UVI. Material and methods of research. The study involved 132 albino guinea pigs weighing 400-500 g, divided into 4 groups: 1 - intact, 2 - control (guinea pigs subjected to local UVI), 3 and 4 main ones. The third main group included guinea pigs that after UVI were administered thiotriazoline ointment in the treatment and prophylactic regime, the fourth main group included guinea pigs that after UVI were administered thiotriazoline ointment with silver nanoparticles in the same mode as Group 3. Ointments were applied 1 hour before irradiation and daily until erythema disappeared. Ultraviolet erythema was caused by irradiation in 1 minimum erythemal dose. After 2, 4 hours, on the 3rd, 8th, 15th, 21st, 28th day, the fragments of irradiated skin were investigated using histochemical and morphometric methods (fibroblast density and epidermis thickness). Results. Morphological changes in the skin after applying ointments with antioxidant activity were unidirectional. It was revealed that in the early periods after irradiation, thiotrazoline ointment and thiotrazoline ointment with silver nanoparticles do not affect changes in the thickness of the epidermis, but statistically significantly reduce the density of fibroblasts in the dermis on the 3rd day of the experiment compared to the control group. In the later periods, under the influence of thiotriazoline ointment, a gradual decrease in the thickness of the epidermis, which reached the norm by the end of the experiment, was observed. On the 8th day, the maximum density of fibroblasts was recorded, in the subsequent periods of the experiment, the index gradually decreased, which was accompanied by collagenization of the papillary layer in the loci of damage to collagen and elastic fibers detected in 50% of cases. In later times, under the influence of thiotriazoline ointment with silver nanoparticles, the processes of restoring the morphological structures of the skin occurred faster. In parallel with the decrease in the density of fibroblasts in the loci of the previous damage to the collagen and elastic fibers of the papillary layer, thickening of collagen fibers was observed, replacing them with segments of destruction of elastic fibers. In this group, at the end of the experiment, the collagenization locus was small, single, occurring in 16.7% of cases. Conclusions Ointments with antioxidant activity exert a positive effect on the state of morphological structures of the skin, damaged as a result of local UVI, in erythemal and post-erythemic periods. In the early periods after the local UVI, there was a general tendency for the effect of both ointments, as they reduced the density of fibroblasts on the 3rd day, but did not result in complete normalization. In the late period after local UVI , under the influence of thiotriazoline ointment and thiotriazoline ointment with silver nanoparticles, thickness of the epidermis (by 21st and 15th day, respectively) and density of fibroblasts (by the 28th day) decreased to normal while without treatment both indicators exceeded the norm by several times for 28 days of the experiment.


2020 ◽  
Vol 9 (2) ◽  
pp. 975-980 ◽  

Acacia nilotica (L.) Delile is well known as “Desi Kikar”or Babul in India that possesses a wide range of pharmacological activities. In the present study, Acacia nilotica twig extract and its synthesized silver nanoparticles (AgNPs) were evaluated for total phenolic content (TPC), antioxidant activity and cytotoxic effects. Characterization of AgNPs was done by UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) techniques. Antioxidant potential was determined using different assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power and β-carotene linoleic acid. Cytotoxicity was tested by 3-(4,5-dimethyl-2-yl)-2,5-diphynyl tetrazolium bromide (MTT) assay on Human embryonic kidney (HEK)-293 cell lines. The results indicated that AgNPs exhibited higher antioxidant activity (81.11 %) and TPC (57.35 mg of GAE/mL of extract) as compare to plant extract. A positive correlation was observed between the TPC and antioxidant activities. The inhibitory concentration (IC50) of A. nilotica extract and AgNPs was 52.08µg/mL and 56.82µg/mL respectively. Cytotoxicity against HEK-293 cell lines was dose dependent. Accordingly, it is summarized that A. nilotica based AgNPs could serve as a potential antioxidant for therapeutic purposes.


2020 ◽  
Vol 8 (2) ◽  
pp. 94-98
Author(s):  
Mohammad Reza Rezaei ◽  
Ali Es-haghi ◽  
Parichehreh Yaghmaei ◽  
Maryam Ghobeh

Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. Haplophyllum obtusifolium from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by H. obtusifolium. Methods: The aerial parts of H. obtusifolium were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively. Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (Klebsiella pneumoniae) bacterium, but they had no effects on gram-positive Staphylococcus epidermidis. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles. Conclusion: Our results suggested that H. obtusifolium can be used as a key source of antioxidants/ antimicrobial agents in food and pharmaceutical industries.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.


Sign in / Sign up

Export Citation Format

Share Document