scholarly journals Brief Review and Mathematical Modelling of Air Cushioned Pressurized Paper Machine Headbox

2018 ◽  
Vol 7 (3.4) ◽  
pp. 57 ◽  
Author(s):  
Parvesh Saini ◽  
Rajesh Kumar

Today, the requirement of high grade papers is increasing day by day. To cater the need of high quality papers, new high-speed paper machines are being developed constantly. The whole economy of a pulp and paper industry depends on the quality of paper produced, quality of paper depends on the efficient operation of the major part of paper industry – paper machine. Paper machine is the heart of paper industry and has many subsystems. One of the important subsystem of paper machine is Headbox.   To have the desired quality papers, efficient working of headbox is highly required. To have desired operation from headbox, its precise control is necessary. The precise modelling of headbox, leads to design of efficient controllers for its proper control to get the desired response. This paper presents the mathematical modelling of headbox along with a brief review of various research performed on headbox.  

2018 ◽  
Vol 7 (2.6) ◽  
pp. 39 ◽  
Author(s):  
Parvesh Saini ◽  
Rajesh Kumar

Paper, today, has made an important place in human’s life. Being an important commodity, paper has different qualities throughout the globe. As the technology is advancing, paper is being used for numerous applications and need of good quality paper is increasing daily. To have papers of desirable quality, paper machines with latest technology are developed. However, the quality of paper principally depends on the prime element of paper machine i.e. Headbox. Headbox is a highly non-linear Multi-input Multi-output (MIMO) component of paper machine and requires a precise control of its major parameters to get good quality papers which eventually responsible for sustained economy of pulp and paper industry. In past few decades, headbox has been a key element for research. Researchers have developed different control algorithms for headbox. This paper presents stability analysis of paper machine headbox using a new technique of Proportional – Integral – Derivative (PID) controller design namely Extended Forced Oscillation method (EFO). Also, the paper presents a comparative analysis of EFO method of PID tuning with the conventional Ziegler - Nichols(ZN) tuning technique based on transient characteristics and performance indices of headbox.


Author(s):  
Amanie N. Abdelmessih ◽  
Michael A. Beakley ◽  
Steven B. Campbell ◽  
Eric W. McKnight ◽  
Michael P. Roberts ◽  
...  

The paper industry is the second largest consumer of energy in the Northwest. The majority of energy consumption in any paper mill occurs in the paper dryer section. This article presents a unique, complete dryer section design that is more economical than conventional paper dryers. The proposed dryers use infrared radiation as the primary form of heat transfer. The infrared dryer section design is compared to the conventional steam dryer section for a high speed newsprint paper machine. Since conventional steam dryer sections in paper machines are a major capital investment and last for decades, a simple, economical retrofit design of a conventional dryer section is included.


GIS Business ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 1062-1069
Author(s):  
S.Ramesh ◽  
B.A.Vasu

This paper is an attempt to assess if the manufacturing process of paper machine is in statistical control thereby improving the quality of paper being produced in a paper industry at the time of process itself. Quality is the foremost criteria for achieving the business target. Therefore, emphasis was made on controlling the quality of paper at the time of manufacturing process itself, rather than checking the finished lots at a later time.  This control on quality will help the industry deduct the small shift in the process parameters and modify the operating characteristics at the time of production itself rather than receiving complaints from customers at a later stage.  This paper describes controlling quality at the time of manufacture itself and helps the industry to concentrate on quality at low cost. The researcher has collected primary data at a leading paper industry during October, 2019.  Though X-bar and Range charges were primarily used, CUSUM charts were used to sense the minor shifts in manufacturing process, to explore the possibility of adjusting process parameters during manufacture of paper.


2004 ◽  
Vol 58 (5) ◽  
pp. 228-231
Author(s):  
Milun Krgovic ◽  
Nada Blagojevic ◽  
Nikola Blagojevic

Non-metallic mineral fillers strongly influence the characteristics and quality of paper. "Visocica" limestone and "Virpazar" dolomite were used to prepare paper samples in this study. The characteristics of such paper samples produced on a laboratory paper machine are presented. The used fillers and paper pulp were also characterized. The following paper characteristics were investigated: gramature, thickness, softness, air permeability, resistance to tearing and stretching, paper ash and retention. The experiments were performed in order to compare the influence of the physico-chemical and structural qualities of the examined carbonate type fillers on the paper properties. The results of the investigation indicated the technological reasons for using these non-metallic mineral raw materials as fillers in the paper industry regarding the mechanical paper characteristics, as well as other properties.


2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


1993 ◽  
Vol 28 (2) ◽  
pp. 17-26 ◽  
Author(s):  
V. Eroǧlu ◽  
A. M. Saatçi

Recent advances made in the reuse of pulp and paper industry sludges in hardboard production are explained. Data obtained from pilot and full-scale plants using primary sludge of a pulp and paper industry as an additive in the production of hardboard is presented. An economic analysis of the reuse of pulp and paper primary sludge in hardboard manufacturing is given. The quality of the hardboard produced is tested and compared with the qualities of the hardboard produced by the same plant before the addition of primary sludge. The hardboard with primary sludge additive has been used in Turkey for about a year in the manufacturing of office and home furniture. The results are very satisfactory when the primary sludge is used at 1/4 ratio.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 655
Author(s):  
Huanhuan Zhang ◽  
Jigeng Li ◽  
Mengna Hong

With the global energy crisis and environmental pollution intensifying, tissue papermaking enterprises urgently need to save energy. The energy consumption model is essential for the energy saving of tissue paper machines. The energy consumption of tissue paper machine is very complicated, and the workload and difficulty of using the mechanism model to establish the energy consumption model of tissue paper machine are very large. Therefore, this article aims to build an empirical energy consumption model for tissue paper machines. The energy consumption of this model includes electricity consumption and steam consumption. Since the process parameters have a great influence on the energy consumption of the tissue paper machines, this study uses three methods: linear regression, artificial neural network and extreme gradient boosting tree to establish the relationship between process parameters and power consumption, and process parameters and steam consumption. Then, the best power consumption model and the best steam consumption model are selected from the models established by linear regression, artificial neural network and the extreme gradient boosting tree. Further, they are combined into the energy consumption model of the tissue paper machine. Finally, the models established by the three methods are evaluated. The experimental results show that using the empirical model for tissue paper machine energy consumption modeling is feasible. The result also indicates that the power consumption model and steam consumption model established by the extreme gradient boosting tree are better than the models established by linear regression and artificial neural network. The experimental results show that the power consumption model and steam consumption model established by the extreme gradient boosting tree are better than the models established by linear regression and artificial neural network. The mean absolute percentage error of the electricity consumption model and the steam consumption model built by the extreme gradient boosting tree is approximately 2.72 and 1.87, respectively. The root mean square errors of these two models are about 4.74 and 0.03, respectively. The result also indicates that using the empirical model for tissue paper machine energy consumption modeling is feasible, and the extreme gradient boosting tree is an efficient method for modeling energy consumption of tissue paper machines.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


Sign in / Sign up

Export Citation Format

Share Document